\qquad
Instructions: Show all work for each of the following in the space provided.

1. (a) Convert the following to radian measure: 250°
(b)Convert the following to degree measure: 1.35 rad
(c) Determine the principal angle of $\frac{-37 \pi}{6}$ in radians.
2. Solve the following trigonometric equation: $\cos x(1+2 \sin x)=0,-4 \pi \leq x<2 \pi$

$$
\begin{gathered}
\text { (Must include a separate sketch for each angle) } \\
5 \sin \left(-\frac{29 \pi}{6}\right)-3 \sec ^{2}\left(\frac{25 \pi}{4}\right)+\sqrt{3} \tan \left(\frac{14 \pi}{3}\right)-\csc \left(\frac{11 \pi}{2}\right)+5 \cos (53 \pi)
\end{gathered}
$$

4. Solve each of the following trigonometric equations:
(a) $7 \cos ^{2} x+4 \cos x=3, \quad-360^{\circ} \leq x \leq 720^{\circ}$
(b) $(2 \sin \theta-1)^{2}+9 \sin \theta=2 \sin \theta(\sin \theta+1), \quad-4 \pi \leq \theta \leq 2 \pi$
5. The helicopter shown has blades that are 7 m in length.

(a) If the blades made 250 revolutions in a 40 second interval, determine the angular velocity of the blades in radians/second?
(b) Given the conditions from part (a) determine how far the tip of one of these blades travels after 12 seconds has passed.
(c) Given that the helicopter has an internal gauge indicating that the blades are rotating at $425 \mathrm{~km} / \mathrm{h}$, determine the angular velocity of the blades in radians/second.

