Unit Test: Trigonometry

Pre-Calculus 110

[45 MARKS]

1. Sketch the terminal arm for each of the following rotation angles and clearly identify the measure of the reference angle on your diagram. [4]

2. The terminal arm of θ is situated such that $\sec \theta > 0$ and $\sin \theta = -\frac{\sqrt{11}}{6}$. (a) Without the aid of a calculator, determine the **exact** value of $tan^2\theta - sec^2\theta$ in <u>simplest</u> form. (*Sketch must be provided*)

(b) Given that $720^{\circ} \le \theta \le 1080^{\circ}$, determine the measure of θ in standard position.

[2]

[5]

Name:_

 $3 \sec(-210^{\circ})\cot(600^{\circ}) - 2\csc(630^{\circ}) + \sqrt{2}\sin(315^{\circ}) - \cos^{2}(-1035^{\circ})\cos(12600^{\circ})$

[15]

4. Fill in the blanks: [5]
(a) The principal angle of -38955° is ______.
(b) The **first** negative angle co-terminal with 15897° would be ______.
(c) sec (-354°) = ______.
(d) Given that cot θ < 0 and sin θ < 0, then θ must be located in quadrant ______.
(e) If tan θ = -⁷/₁₂ and 0° ≤ θ ≤ 180°, then the measure of θ in standard position is ______.
5. Given that the ordered pair (-2, 2√3) lies on the terminal arm of angle θ....

[4]

(a) Determine the exact value of $\sin \theta \cot \theta$ in simplest form. (Sketch must be provided)

(b) Given that $-720^{\circ} \le \theta \le -360^{\circ}$, determine measure of θ in standard position. [2]

6. (a) Given that $\cos \theta = -0.7193$ and $-720^{\circ} \le \theta \le 540^{\circ}$, determine ALL possible values of θ . [4]

(b) Given that $\csc \theta = 2.3662$ and $-1080^{\circ} \le \theta \le -270^{\circ}$, determine all possible values of θ . [4]