Curriculum Outcomes:

(SS1) Solve problems and justify the solution strategy using circle properties, including: the perpendicular from the centre of a circle to a chord bisects the chord; the measure of the central angle is equal to twice the measure of the inscribed angle subtended by the same arc; the inscribed angles subtended by the same arc are congruent; a tangent to a circle is perpendicular to the radius at the point of tangency.

Student Friendly:

How we can use the tangent properties to solve for unknown lengths. (Tangent properties go hand and hand with Pythagorean theorem)

Pythagorean Theorem Review

Missing angles:

Tangent Properties

• tangent - a line that touches a circle/curve at only 1 point.

- the point of contact is called the **point of tangency.**

ex:

Line AB is a tangent

"P" is the **point of tangency**

Center is Denoted by "O"

Tangent Property 1:

A tangent to a circle is perpendicular to the radius at the point of tangency. <APO = <BPO = 90° (Tang P)

"Join O to B and you have formed a right triangle. Thus, you can use the Pythagorean Theorem to find side lengths." (OR Angle sum of triangle to find missing angles)

$$\angle CAB = 30^{\circ}$$
 $\angle ABC = 60^{\circ}$
 $\angle ACB = 90^{\circ}$

Determining the Measure of an Angle in a Triangle

1) Point O is the centre of a circle and AB is a Tangent to the circle. In $\triangle OAB$, $<AOB = 56^{\circ}$. Determine the measure of <OBA. Point A is the point of tangency.

Using the Pythagorean Theorem in a Circle

2) Point O is the center of a circle and TK is a tangent to the circle. TK is 20 cm and 0 K = 30 cm. Determine the length of the radius OT. Give the answer to the nearest tenth. Point T is the point of tangency.

OT
$$\Rightarrow$$
 radius
 $a^2 = c^2 - b^2$
 $c^2 = 36^2 - 26^2$
 $c^2 = 900 - 400$
 $c^2 = 500$
 $c^2 = 500$

Wrap Up to Tangents

Only two ways to solve Tangent Problems:

1) Angle sum of a triangle

180° - 90° - given angle = unknown angle

2) Pythagorean Theorem

$$c = \sqrt{a^2 + b^2}$$

Hypotenuse

$$a = \sqrt{c^2 - b^2}$$

Leg

