Curriculum Outcomes:

(SS1) Solve problems and justify the solution strategy using circle properties, including: the perpendicular from the centre of a circle to a chord bisects the chord; the measure of the central angle is equal to twice the measure of the inscribed angle subtended by the same arc; the inscribed angles subtended by the same arc are congruent; a tangent to a circle is perpendicular to the radius at the point of tangency.

Student Friendly:

How we can use the Chord properties to solve for unknown lengths. (Chord properties go hand and hand with Pythagorean theorem, angle sum of a triangle and isosceles triangles)

Fill in the blanks

4) The radius is the line _____

1) The rangem is ______

4) The radius is the line **\delta \s**

SHOW YOUR WORK

5) Find the length of the radius if OW = 17 and SW = 9

Determine the unknowns:

Determine the unknowns:

Calculating with **Tangents** We Only Use ...

1) Pythagorean Theorem

finding the hypotenuse $\rightarrow c^2 = a^2 + b^2$

or

2) Angle Sum of Triangle (SATT)

Unknown Angle= 180° - 90° - known angle

Section 8.2

Properties of Chords in Circles

Properties of Circles & Terminology:

Circle - the set of all points that are equidistant from a fixed point.

radius =
$$\frac{1}{2}$$
 (diameter)
diameter = 2 (radius)

- A line segment that joins two points on a circle is a <u>chord</u>.
- A diameter of a circle is a chord through the centre of the circle. It's the longest Chord.

Perpendicular bisector:

→ line that cuts a chord into two equal pieces at 90° angle

Chord Property 1

• A line drawn from the centre of a circle that is perpendicular to a chord <u>bisects</u> the chord. (It cuts the chord into two equal parts.)

If OC is perpendicular to AB
Then

O
B

Chord Property 2

• The perpendicular bisector of a chord in a circle passes through the <u>centre</u> of the circle.

A perpendicular bisector of a chord must go through the centre.

Perpendicular to a Chord Property 3

 A line that joins the centre of a circle and the midpoint of a chord is perpendicular to the chord.

A line that comes from the centre of the circle and cuts the chord into two equal pieces is the perpendicular bisector

Perpendicular to a Chord Property 4

• Two chord that are equal distance from the center must be the same

Working With Chords Lengths We Only Use ...

Note: the only reason they give you diameter is so you can use the radius

1) Pythagorean Theorem

finding the hypotenuse $\rightarrow c^2 = a^2 + b^2$

or

2) Angle Sum of Triangle (SATT)

Unknown Angle= 180° - 90° - known angle

or

3) Isosceles Triangle (ITT)

<OAB = <OBA (Iso \triangle)

Chord Properties:

AP = PB (Chord P 1)

<APO = 90° (Chord P 3)

$$<$$
BPO = 90° (Chord P 3)

AB = CD (Chord P 4)

To Solve use:

Angle= ____° (SATT) or (ITT)

Side= ___ cm (Pythagorean theorem)