

5.6 Properties of Linear Relations

LESSON FOCUS

Identify and represent linear relations in different ways.

Make Connections

The table of values and graph show the cost of a pizza with up to 5 extra toppings.

Number of Extra Toppings	Cost (\$)
0	12.00
1	12.75
2	13.50
3	14.25
4	15.00
5	15.75

EXERCISE...

Which table of values represents a linear relation? Justify your answer.

a) The relation between the number of bacteria in a culture, n, and time, t minutes.

	t	n		
+ (0	1)+1 Non linear	_
20	20	2	<u>/</u>	•
tu	40	4	515	
120	60	8	2 · 4	
tedy	80	16	₹ 8 .	
+500	100	32	2716	

b) The relation between the amount of goods and services tax charged, *T* dollars, and the amount of the purchase, *A* dollars

+60	\boldsymbol{A}	T		
	60	3	1+3	linear
4	120	6	2	
[6]	180	9	35	
6	240	12	5.	
66	300	15		

Here is another example of a linear relation...

The cost for a car rental is \$60, plus \$20 for every 100 km driven.

The independent variable is the distance driven and the dependent variable is the cost.

We can identify that this is a linear relation in different ways.

a table of values

For a linear relation, a constant change in the independent variable results in a constant change in the dependent variable.

5.6 Properties of Linear Relations

How to identify a linear relation...

a set of ordered pairs

←?

Why is it important that the ordered pairs are listed so their first elements are in numerical order?

a graph

The graph of a linear relation is a straight line.

We can use each representation to calculate the rate of change.

The rate of change can be expressed as a fraction:

$$\frac{\text{change in dependent variable}}{\text{change in independent variable}} = \frac{\$20}{100 \text{ km}}$$

= \$0.20/km

5.6 Properties of Linear Relations

Rate of Change = <u>change in dependent variable</u>

(ROC) change in independent variable

EXERCISE...

This graph shows the fuel consumption of a scooter with a full tank of gas at the beginning of a journey.

Volume of Gas in a Scooter

- a) Write the coordinates of the points where the graph intersects the axes. Determine the vertical and horizontal intercepts.
 Describe what the points of intersection represent.
- b) What are the domain and range of this function?

uhat soutch y-int: (0,8) y-int: (200,0) - max Kms + its out of gas.

ONE MORE...

Which graph has a rate of change of -5 and a vertical intercept of 100? Justify your answer.

$$R\delta C = \Delta S$$

$$= -100$$

$$= -5$$

$$ROC = \Delta y$$

$$\Delta x$$

$$= -100$$

$$-20$$

$$= S$$

The rate of change is \$0.20/km; that is, for each additional 1 km driven, the rental cost increases by 20¢. The rate of change is constant for a linear relation.

We can determine the rate of change from the equation that represents the linear function.

Let the cost be *C* dollars and the distance driven be *d* kilometres.

An equation for this linear function is:

5.6 Properties of Linear Relations

- Graphing Relations
- I. Using a table of values:

Using a Table of Values to Graph a Linear Relation Worksheet

Find the value of "y" in the following table(s) of values.

a)
$$y = x + 2$$

$$2x + 1$$

$$y = x + 2$$
 b) $y = 2x + 1$ c) $y = 3x - 1$ d) $y = 2x$

$$d) v = 2x$$

×	У
0	2
1	3
2	4
3	S
4	6

×	у
3	7
4	9
5	11
6	13
20	41

X	у
8	23
9	26
10	29
11	32
25	74

×	У
2	4
3	6
4	8
5	10
100	200

e)
$$y = \frac{1}{2}x + 2$$

×	У
0	2
2	3
4	4
6	5
8	6

f)
$$y = \frac{1}{3}x - 3$$

×	у
3	-2
6	- (
9	0
12	

EXAMPLE: Create a table of values and graph...

• Graph
$$y = 2x + 3$$

$$y = \frac{2}{3}x + 1$$

YOUR TURN...

Graph the equation: y = -3x + 5

X	9	
-2	11	
-1	8	
0	5	
(2	
4	-(

PRACTICE PROBLEMS...

p. 308: #3 - 8, 12, 14, 16