Curriculum Outcome

(N5) Determine the square root of positive rational numbers that are perfect squares.
(N6) Determine an approximate square root of positive rational numbers that are non-perfect squares.
(SS2) Determine the surface area of composite 3-D objects to solve problems
(N4) **Explain and apply the order of operations, including exponents, with and without technology.**

Take out a pencil and calculator!!!

Separate desk

Calculate the surface area of the following (Show all work)

Calculate the surface area of the following
(Show all work)

$$
\begin{aligned}
& 7 \text { cube } \times 6 \text { faces } \\
& =42 \text { faces }-16 \text { faces } \\
& =26 \text { faces } \\
& \times 16 \mathrm{~cm}^{2} \\
& \\
& T \text { TA }=416 \mathrm{~cm}^{2}
\end{aligned}
$$

$A=16 \mathrm{~cm}^{2}$

Let's go over last night's homework
page 31
Questions: 4
8 ac
MUST SHOW ALL WORK

4a) Area of a single face $=1$ unit 2
\# Of cubes $=3$
Total number of faces $=6 \times 3=18$ faces
\# of overlaps = 2
$\#$ of faces that disappear $=2(2)=4$
$\#$ of visible faces $=18-4$
$=14$ Faces
x 1 unit 2
Total $\mathrm{S}=14$ unit 2

4b) Area of a single face $=1$ unit 2
$\#$ Of cubes $=4$
Total number of faces $=6 \times 4=24$ faces
\# of overlaps $=3$
$\#$ of faces that disappear $=2(3)=6$
\# of visible faces $=24-6$
$=18$ Faces
x 1 unit 2
Total SA = 18 unit 2

4c) Area of a single face $=1 u n i t^{2}$
$\#$ Of cubes $=5$
Total number of faces $=6 \times 5=30$ faces
$\#$ of overlaps $=4$
$\#$ of faces that disappear $=242)=8$
\# of visible faces $=30-8$ $=22$ Faces x 1 unit 2
Total $\mathrm{SA}=22$ unit 2

4d) Area of a single face $=1$ unit 2 $\#$ Of cubes $=5$

Total number of faces $=6 \times 5=30$ faces
\# of overlaps = 5
$\#$ of faces that disappear $=2(5)=10$
\# of visible faces $=30-10$
$=20$ Faces
x 1 unit 2
Total $5 A=20$ unit 2

Homework Solutions

Page 30 continued...

$$
\begin{aligned}
& \text { 4e) Area of a single face }=1{\text { unit }^{2}}^{\# \text { Of cubes }=5} \\
& \text { Total number of faces }=5 \times 6=30 \text { faces } \\
& \text { \# of overlaps }=4 \\
& \text { \# of faces that disappear }=2(4)=8 \\
& \begin{aligned}
\text { \# of visible faces }=30-8 & =22 \text { Faces } \\
& \frac{\times 1 \text { unit }^{2}}{22 \text { unit }^{2}}
\end{aligned} \\
& \text { Total SA }=22
\end{aligned}
$$

4f) Area of a single face $=1$ unit 2
$\#$ Of cubes $=6$
Total number of faces $=6 \times 6=36$ faces
\# of overlaps = 5
$\#$ of faces that disappear $=2(5)=10$
\# of visible faces $=36-10$
$=26$ Faces
x 1 unit 2
Total $\mathrm{SA}=26$ unit 2

5i) Area of a single face $=1$ unit 2
\# Of cubes $=5$
Total number of faces $=6 \times 5=30$ faces
Total Area of all cubes $=30$ faces $\mathrm{x}\left(1 u_{n i t}{ }^{2}\right)$

$$
=30 \text { units }^{2}
$$

\# of overlaps = 5
$\#$ of faces that disapear $=2(5)=10$
area of disapearing faces $=10 \times 1$ units 2
$=10$ units 2

Total SA $=30$ units $^{2}-10$ units 2

$$
=20 \text { units }^{2}
$$

5ii) Area of a single face $=1$ unit 2
$\#$ Of cubes $=5$
Total number of faces $=6 \times 5=30$ faces
Total Area of all cubes $=30$ faces $\mathrm{x}\left(1 u^{2} \mathrm{t}^{2}\right)$

$$
=30 \text { units }^{2}
$$

$\#$ of overlaps $=5$
$\#$ of faces that disapear $=2(5)=10$
area of disapearing faces $=10 \times 1$ units 2

$$
=10 \text { units }^{2}
$$

Total SA $=30$ units $^{2}-10$ units 2

$$
=20 \text { units }^{2}
$$

8 a)

$\begin{aligned} & \mathrm{BH}=\left(\sqrt[5]{\times 3}^{2}\right. \\ & \square^{3}\end{aligned}$

$$
\begin{aligned}
& A=b \times h \\
& A=5 \times 3 \\
& A=15 \\
& 2 A=30 \mathrm{~cm}^{2}
\end{aligned}
$$

1

$$
A=b \times h
$$

$$
A=3 \times 2
$$

$$
A=6
$$

$$
2 A=12 \mathrm{~cm}^{2}
$$

$$
S A=30+12+20
$$

$$
S A=62 \mathrm{~cm}^{2}
$$

small: $(\sqrt{|x 2 x|})$

$$
A=b \times h
$$

$$
A=1 \times 2
$$

$$
A=2
$$

$$
2 A=4 \mathrm{~cm}^{2}
$$

$$
A=b \times h
$$

$$
A=1 \times 2
$$

$$
A=2
$$

$$
2 A=4 \mathrm{~cm}^{2}
$$

$\frac{2}{5} 2$

$$
A=b \times h
$$

$$
A=5 \times 2
$$

$$
A=10
$$

$$
2 A=20 \mathrm{~cm}^{2}
$$

$\frac{\square}{2}$
$A=b \times h$
$A=\mid \times 1$
$A=1$
$2 A=2 \mathrm{~cm}^{2}$

$$
\begin{aligned}
S A_{2}= & 4+4+2 \\
= & 10 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
T_{S A} & =S A_{1}+S A_{2}-\text { overlap } \\
& =62+10-4 \\
& =68 \mathrm{~cm}^{2}
\end{aligned}
$$

Warehouse Question

Find the area of the warehouse with the attached storage space.
(WAREHOUSE QUESTION YOU DO NOT INCLUDE WINDOWS DOORS AND FLOORS)

Step 1) Calculate the surface are of the larger prism,

Step 2) Calculate the surface are of the smaller prism,

Step 3) Calculate the Total Surface Area
Tsa= big + small - overlap -floors - doors

Find the area of the warehouse with the attached storage space.
(WAREHOUSE QUESTION YOU DO NOT INCLUDE WINDOWS DOORS AND FLOORS)

Option 1
Door Area
1×6

Step 1) Calculate the surface are of the larger prism, 40, 20, 15
$20 \frac{2}{40}$
$15 \begin{aligned} & 2 \\ & 20 \\ & 20\end{aligned}$
$A=b \times h$
$A=40 \times 20$
$A=b \times h$
$A=b \times h$
$A=800$
$2 A=1600$

$A=15 \times 20$
$\begin{aligned} S A_{1}= & =1600 \\ & 1200\end{aligned}$
$A=40 \times 15$
$A=15 \times 2$
$A=300$
$\frac{100}{3400} \mathrm{~m}^{2}$

Step 2) Calculate the surface are of the smaller prism,

Step 3) Calculate the Total Surface Area

$$
\begin{aligned}
\text { Ts }= & \text { big }+ \text { small - overlap -floors }- \text { doors } \\
& 3400+190-100-(800)-30-6 \\
= & 2654 \mathrm{~m}^{2}
\end{aligned}
$$

Find the area of the warehouse with the attached storage space.
(WAREHOUSE QUESTION YOU DO NOT INCLUDE WINDOWS DOORS AND FLOORS)

Step 1) Calculate the surface are of the larger prism, 40, 20, 15
20

15

15

$$
\begin{aligned}
& A=b \times h \\
& A=40 \times 20 \\
& A=800
\end{aligned}
$$

$$
A=b \times h
$$

$$
A=b \times h
$$

$$
A=40 \times 15
$$

$$
A=15 \times 20
$$

$$
\begin{aligned}
S A_{1}= & 1600 \\
& 1200
\end{aligned}
$$

$$
A=600
$$

$$
A=300
$$

$2 A=600$
$\frac{600}{2600 \mathrm{~m}^{2}}$

Step 2) Calculate the surface are of the smaller prism,

$$
\begin{aligned}
& 3 \square \\
& A=b \times h \\
& A=3 \times 10 \\
& A=30
\end{aligned}
$$

$$
3 \longdiv { 2 }
$$

$5 \frac{2}{10}$

$$
A=b \times h
$$

$$
A=3 \times 5
$$

$$
A=15
$$

$$
2 A=30
$$

$$
\begin{array}{lr}
A=6 \times h & S A=100 \\
A=5 \times 10 & 30 \\
A=50 & \frac{60}{160} \mathrm{~m}^{2}
\end{array}
$$

$2 A=100$

Step 3) Calculate the Total Surface Area

$$
\begin{aligned}
\text { Ts } & =\text { big }+ \text { small-overlap-ss }- \text { doors } \\
& =2600-160-100-6 \\
& =2654 \mathrm{~m}^{2}
\end{aligned}
$$

Questions: 8b

MUST SHOW ALL WORK

