OCTOBER 9, 2019

UNIT 2: POWERS AND EXPONENT LAWS

SECTION 2.2: POWERS OF 10 AND THE ZERO EXPONENT

K. Sears

MATH 9

Oct 1-9:44 AM

WHAT'S THE POINT OF TODAY'S LESSON?

We will continue working on the Math 9 Specific Curriculum Outcome (SCO) "Numbers 1" OR "N1" which states:

"Demonstrate an understanding of powers with integral bases (excluding base 0) and whole number exponents by: representing repeated multiplication using powers; using patterns to show that a power with an exponent of zero is equal to one; solving problems involving powers."

What does THAT mean???

SCO N1 means that we will learn about the two parts of a power (the base, or "the big number", and the exponent, or "the little number"). We will show what a power means when we write it out using multiplication (ex: $3^2 = 3 \times 3$), and we will use patterns to prove, for example, that $3^0 = 1$. Finally, we will use what we know about powers to solve problems.

Oct 1-9:44 AM

WARM UP:

Evaluate each expression.

i)
$$-3^2$$
 ii) $-(3)^2$ iii) $-(-3)^2$ iv) $(-3)^2$ -9 -9 -9

HOMEWORK QUESTIONS?

(Pages 56 / 57, #14, 16, 18, 19, 20, 21a and "Extra Practice 1" Worksheet, #1 TO #9ac)

9. Stamps
a)
$$10 \times 10 = 100 \text{ stamps}$$

 10^{2}
c) $\frac{60}{100} = \frac{90.60}{\text{stamp}}$

Oct 2-3:36 PM

SECTION 2.2: POWERS OF 10 AND THE ZERO EXPONENT

Please copy and complete the following table:

EXPONENT	POWER (use a base of 2)	STANDARD FORM
5	25	32
4	24	16
3	9,3	8
2	a ²	4
1	٦'	a
0	a °	1

Please copy and complete the following table:

EXPONENT	POWER (use a base of 3)	STANDARD FORM
5	35	243
4	34	81
3	33	27
2	32	9
1	3'	3
	3°	1

Oct 17-12:52 PM

Please copy and complete the following table:

EXPONENT	POWER [use a base of (-5)]	STANDARD FORM
5	(-5) ⁵	
4		
3		
2		
1		

UNIT 2, 2nd PAGE: "EXPONENT LAWS"

1. ZERO EXPONENT LAW A power with an integer base (other than 0) and an exponent of 0 is equal to 1. We express this law as: a = 1; $a \neq 0$.

Ex.:
$$2^0 = 1$$

 $3^0 = 1$
 $(-5)^0 = 1$
 $4^0 = -1$

Oct 17-12:56 PM

PLEASE TURN TO PAGE 59 IN MMS9. LOOK AT EXAMPLE 1 - EVALUATING POWERS WITH EXPONENT ZERO.

Evaluate each expression:

1.
$$13^0 = 1$$

1.
$$13^0 = 1$$
 2. $(-15)^0 = 1$

3.
$$-7^0 = -1$$

4.
$$-(-8^{\circ}) =$$

5.
$$[-2^2 + 3^3 \times (-5)^5 \div (-10)^8]^0 =$$

PLEASE TURN TO PAGE 60 IN MMS9. LOOK AT EXAMPLE 2 - WRITING NUMBERS USING POWERS OF TEN.

Write the following numbers using powers of 10:

$$8000 + 600 + 70 + 8$$

$$1. 8678 = 8 \times 1000 + 6 \times 100 + 7 \times 10 + 8 \times 1$$

$$Standard = 8 \times 10^{3} + 6 \times 10^{2} + 7 \times 10^{1} + 8 \times 10^{0}$$

2.
$$12.935 = 1 \times 10.000 + 2 \times 1000 + 9 \times 100 + 3 \times 10 + 5 \times 10^{2}$$

= $1 \times 10^{4} + 2 \times 10^{3} + 9 \times 10^{2} + 3 \times 10^{4} \times 5 \times 10^{3}$

3.
$$403 = \frac{4 \times 100 + 3 \times 1}{4 \times 10^2 + 3 \times 10^6}$$

Oct 17-1:05 PM

$$7 \times 10^{3} + 8 \times 10^{1} + 2 \times 10^{6}$$

$$7 \times 1000 + 8 \times 10 + 2 \times 1$$

$$7000 + 80 + 2$$

$$7082$$

CONCEPT REINFORCEMENT:

MMS9:

PAGE 61: #4, 5, 6, 7, 8, 9, 10, 11, and 12

10 b)
$$3 \times 10^{4} + 9 \times 10^{3} + 5 \times 10^{1} + 7 \times 10^{\circ}$$

 $10^{4} + 10^{3} + 10^{2} + 10^{1} + 10^{\circ}$
 $3 + 9 + 0 + 5 + 7$

c)
$$8 \times 10^{8} + 5 \times 10^{5} + 2 \times 10^{2}$$

 $10^{6} 10^{7} 10^{6} 10^{5} 10^{4} 10^{3} 10^{2} 10^{6} 10^{6}$
 $8 0 0 5 0 0 2 0 0$

Oct 17-1:08 PM