

May 2-10:54 AM

In the first carton, Gordon would have to arrange the boxes so that 2 fit along the width (10 cm \div 5 cm), 2 fit along the length (10 cm \div 5 cm), and 10 fit within the height (50 cm \div 5 cm). This carton would fit 40 boxes (2 \times 2 \times 10). Gordon could ship the boxes in 4 of these cartons (160 \div 40).

Oct 26-10:02 AM

In the second box, Gordon could fit 20 boxes along the length (100 cm \div 5 cm), 2 along the width (10 cm \div 5 cm), and 2 boxes within the height (10 cm \div 5 cm). This box would only fit 80 boxes (20 \times 2 \times 2). Gordon could ship the boxes in 2 of these cartons (160 \div 80).

In the third box, Gordon could fit 10 boxes along the length (50 cm \div 5 cm), 10 boxes along the width (50 cm \div 5 cm), and 10 boxes within the height (50 cm \div 5 cm). The box would fit 1000 of the smaller boxes (10 \times 10 \times 10). This carton is much too big for the shipment.

Oct 26-10:03 AM

Volume

versus

<u>Capacity</u>

- amount of space an object takes up.
- all objects have volume.
- measured in cubed units.
- amount of material that can be contained in a hollow volume.
- measured in such as litres and gallons.
- * hollow objects have volume and capacity while solid objects only have volume.

 Remember...

$$1 \text{ cm}^3 = 1 \text{ mL}$$

How Volume and Capacity are Related		
$1 \text{ cm}^3 = 1 \text{ mL}$	$1m^3 = 1000 L$	$1000 \text{ cm}^3 = 1 \text{ L}$

Formula???

$$V = lxwxh$$

= (5)(3)(7)
= 105 cm³

Oct 24-8:51 PM

Finding the Volume of a Triangle Prism...

Formula???

$$V = Abase \times h$$

$$= bh \times l$$

$$= (8)(3) \times 20$$

$$= 240 \text{ cm}^{3}$$

Oct 24-8:55 PM

Note: The volume of any prism can be found by taking the area of the base and multiplying by the height.

$$\bigvee_{\text{prism}} = A_{\text{base}} \times \text{height}$$

Oct 24-9:02 PM

With a partner, decide if you can find the volume of an oblique rectangular prism using the same method. Be prepared to defend your position to the rest of your class.

SOLUTION

Lead students to discover that the volume of the prism can be found in the same way the area of a rectangular prism can be found. So the volume would still be found by using $V = \ell \times w \times h$. The volume of the prism is 1445 cm³.

$$V_{prism} = A_{base} x height$$

Oct 24-8:25 PM

HOMEWORK...

Page 252: #1 - 6

6.3 - Build Your Skills Solutions.pdf

b)
$$V = Abase \times h$$

= $\frac{bh}{2} \times w$
= $100(7) \times 50$
= 17500 ft^3
17500 ft³ × $\frac{7.48}{1 \text{ ft}^3}$

$$C^{2} = \alpha^{2} + b^{2}$$

$$h^{2} = 7^{2} + 100^{2}$$

$$= 49 + 10000$$

$$= 10049$$

$$h = 1000.2 \text{ ft}$$

$$C) S. A. = 2b + 10 + 10$$

$$= 2(100)7 + 7(50)$$

$$= 700 + 350 + 5010$$

$$= 6060 \text{ ft}^{2}$$

Oct 24-8:36 PM

6.3 - Build Your Skills Solutions.pdf