Curriculum Outcome

(N1) Demonstrate an understanding of powers with integral bases (excluding base 0) and whole number exponents by: representing repeated multiplication using powers; using patterns to show that a power with an exponent of zero is equal to one; solving problems involving powers.
(N2) Demonstrate an understanding of operations on powers with integral bases (excluding base 0) and whole number exponents.

Student Friendly:
 "What does an exponent do to a number"

Exponents are shorthand for multiplication:
(5) $(5)=5^{2}$,
(5) (5) (5) $=5^{3}$.

The "exponent" stands for however many times the term is being multiplied.
$5^{3} \quad$ (3 times) $5 \times 5 \times 5=125$
The term that's being multiplied is called the "base".

$$
B A S_{i} \rightarrow 5^{3}
$$

$$
\begin{aligned}
& x^{3} y^{2} \\
& x x x y y
\end{aligned}
$$

गैसुपत्या

$$
\begin{aligned}
& (-1)^{2}=(-1)(-1)=+1 \\
& (-1)^{3}=(-1)(-1)(-1)=-1 \\
& (-1)^{4}=(-1)(-1)(-1)(-1)=+1 \\
& (-1)^{5}=(-1)
\end{aligned}
$$

Did you see a pattern??
$(-1)^{10247}=-1 \quad(-1)^{29584}=+1$

$$
(-1)^{10247}=-1 \quad(-1)^{29584}=1
$$

© Evaluating powers when the base is negative... If the exponent is the answer will be , If the exponent is the answer will be

Figure out if the answer is positive or negative: (Explain)

Write 64 as a power of 4

$$
4^{3}=64
$$

a) $4^{2} \quad$ b) ${ }^{43}$
c) 4^{4} d) 4^{-3}

Write 279936 as a power of $\underline{\underline{6}}$

Check out pages 55 and 56.
Please complete questions...
Page 55-57
7ace,8ace,9, 11, 12, 13,14

