Curriculum Outcome

- (N5) Determine the square root of positive rational numbers that are perfect squares.
- (N6) Determine an approximate square root of positive rational numbers that are non-perfect squares.
- (SS2) Determine the surface area of composite 3-D objects to solve problems
- (N4) **Explain and apply the order of operations, including exponents, with and without technology.**

Bonus: Simplify

$$\begin{bmatrix}
 (\mathbf{x}^{5})^{2} \cdot (\mathbf{y}^{2})^{4}]^{3} \cdot [(\mathbf{x}^{'} \cdot \mathbf{y}^{3})^{4}]^{2} \\
 (\mathbf{x}^{'})^{2} \cdot (\mathbf{y}^{2})^{4}]^{3} \cdot [(\mathbf{x}^{'} \cdot \mathbf{y}^{3})^{4}]^{2} \\
 (\mathbf{x}^{'})^{3} \cdot [(\mathbf{x}^{'} \cdot \mathbf{y}^{3})^{4}]^{3} \\
 (\mathbf{x}^{'})^{3} \cdot [(\mathbf{x}^{'})^{3} \cdot [(\mathbf{x}^{'})^{3}]^{3} \\
 (\mathbf{x}^{'})^{3} \cdot [(\mathbf{x}^{'})^{3}]^{3} \\
 (\mathbf{x}^{'})^{3}$$

$$\left[\begin{array}{c} \overline{\text{Top}} \\ \overline{\text{Bottom}} \end{array}\right]^2 = \left[\begin{array}{c} \chi^{38} \ y^{48} \\ \overline{\chi^{24}} \ y^{42} \end{array}\right]^2$$

$$\left[\begin{array}{c} \chi^{14} & y^{6} \end{array}\right]^{2}$$

$$= \chi^{28} & y^{12}$$

1.1 Square Roots of Perfect Squares

A new parking lot is a square with an area of 900 m². What is the side length of the square?

Think Area of a Sqaure

Write the area as a product

"Square" THEN...
Base = Height

Area = base x height $900 = \cancel{b} \times \cancel{b}$ $\sqrt{900} = \cancel{b^2}$ $\boxed{b} = 30$

$$A = b \times h$$

$$A = 10_{cm} \times 10_{cm'}$$

$$A = 100 \text{ cm}^2$$

This squure is divided into 100 equal parts.

What is the area of the blue square?

Area of square

The Area of a square is 625 m² what is the length of the side?

Area of a Square	Side length as a Sqaure Root
9	3
16	<u> </u>
36	6
49	<u> </u>
169	13_
<u> loo</u>	10

To determine the side length of a square we, calculate the "square root" of its area

Perfect Squares

$$(1)^2 = 1 \times 1 = 1$$

$$(2)^2 = 2 \times 2 = 4$$

$$(3)^2 = 3 \times 3 = 9$$

$$(4)^2 = 4 \times 4 = 16$$

$$(5)^2 = 5 \times 5 = 25$$

$$(6)^2 = 6 \times 6 = 36$$

$$(7)^2 = 7 \times 7 = 49$$

$$(8)^2 = 8 \times 8 = 64$$

$$(9)^2 = 9 \times 9 = 81$$

$$(10)^2 = 10 \times 10 = 100$$

$$(11)^2 = 11 \times 11 = 121$$

$$(12)^2 = 12 \times 12 = 144$$

$$(13)^2 = 13 \times 13 = 169$$

$$(14)^2 = 14 \times 14 = 196$$

$$(15)^2 = 15 \times 15 = 225$$

$$(16)^2 = 16 \times 16 = 256$$

$$(17)^2 = 17 \times 17 = 289$$

$$(18)^2 = 18 \times 18 = 324$$

$$(19)^2 = 19 \times 19 = 361$$

$$(20)^2 = 20 \times 20 = 400$$

$$(21)^2 = 21 \times 21 = 441$$

$$(22)^2 = 22 \times 22 = 484$$

$$(23)^2 = 23x 23 = 529$$

$$(24)^2 = 24 \times 24 = 576$$

$$(25)^2 = 25 \times 25 = 625$$

What is the area of the following

What is the area?

$$A = b^2$$

$$A = \left(\frac{11}{10}\right)^2$$

$$A = \frac{121}{100}$$

What is the perimeter?

10

$$P = \frac{11}{10} + \frac{11}{10} + \frac{11}{10} + \frac{11}{10}$$

$$P = \frac{44}{10} + \frac{44}{10} + \frac{44}{10} + \frac{44}{10}$$

Area of square =
$$\frac{49}{81}$$
 cm²

What is the length of the sides?

What it the perimeter of the square

Area of a square is
$$\frac{196}{100}$$

Then the length of a side is determined by taking the square root of the its area. ***

$$A = b \times h$$

Side Length =
$$\sqrt{\frac{196}{100}}$$

$$= \sqrt{\frac{14 \times 14}{10 \times 10}}$$

$$= \frac{14}{10}$$

The side lengthe is $\frac{14}{10}$ units

How do we know if a number is a perfect Square using a calculator?

→ When you take the square root

The answer has to have a

a) Decimal terminates

14

Without Calculator

Example:

Determine if the decimal is a perfect square?

b)
$$a.5$$
 $\sqrt{\frac{25}{10}}$

c)
$$1.69$$

$$= \frac{189}{100}$$

$$= \frac{1310}{100}$$

Class/Homework

Page 11

#3 (a, b, c)

#5 (without calculator)

#7 (without calculator)