September 16, 2019

UNIT 1: ROOTS AND POWERS

SECTION 4.4: FRACTIONAL EXPONENTS AND RADICALS

K. Sears
NUMBERS, RELATIONS AND FUNCTIONS 10

#2

G

WHAT'S THE POINT OF TODAY'S LESSON?

We will continue working on the NRF 10 Specific Curriculum Outcome (SCO) "Algebra and Numbers 3" OR "AN3" which states:

"Demonstrate an understanding of powers with integral and rational exponents."

What does THAT mean???

SCO AN3 means that we will:

* apply the 6 exponent laws you learned in grade 9:

$$a^{\bar{0}}=1$$

$$(a^m)(a^n) = a^{m+n}$$

$$a^m \div a^n = a^{m-n}$$

$$(a^{m})^{n} = a^{mn}$$

$$(ab)^m = a^m b^m$$

$$(\mathbf{a} \div \mathbf{b})^{n} = \mathbf{a}^{n} \div \mathbf{b}^{n}$$

- * use patterns to explain $a^{-n} = \frac{1}{a^n}$ and $a^{\frac{1}{n}} = \sqrt[n]{a}$
- * apply all exponent laws to evaluate a variety of expressions
- * express powers with rational exponents as radicals and vice versa
- * identify and correct errors in work that involves powers

#4

ANY QUESTIONS

(page 221, #1, #3, #4, #6a, #7b, #8, #9 & #11)

8. a)

$$P = s^{3} + s^{4} + s^{4} + s^{4}$$

$$= 4(2)$$

$$= 8$$

6)

$$P = \sqrt{2} + \sqrt{2} + \sqrt{2} + \sqrt{2}$$

= $4\sqrt{2}$

EXPONENT LAWS (separate sheet):

- 1. Zero Exponent Law: $a^0 = 1$ $-/3^\circ = -1$
- 2. Product of Powers: $(a^m)(a^n) = a^{m+n}$
- 3. Quotient of Powers: $a^m \div a^n = a^{m-n}$
- 4. Power of a Power: $(a^m)^n = a^{mn}$
- 5. Power of a Product: $(ab)^m = a^m b^m$
- 6. Power of a Quotient: $(a \div b)^n = a^n \div b^n$

Feb 10-10:00 AM

7. MULTIPLICATION PROPERTY OF RADICALS:

$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

EX.:
$$\sqrt{24}$$
 (Factors: 1, 2, 3, 4, 6, 8, 12, 24)
= $\sqrt{4 \cdot 6}$
= $\sqrt{4 \cdot \sqrt{6}}$
= $2 \cdot \sqrt{6}$
= $2\sqrt{6}$ (MIXED RADICAL)

EX.:
$$\sqrt[3]{24}$$
 (ENTIRE RADICAL)
= $\sqrt[3]{8}$ 3
= $\sqrt[3]{3}$
= $2\sqrt[3]{3}$
= $2\sqrt[3]{3}$

LET'S COPY AND COMPLETE THESE TABLES TOGETHER.

x	$x^{\frac{1}{2}} \left(\chi 0.5 \right)$
1	$1^{\frac{1}{2}} =$
4	$4^{\frac{1}{2}} = 2$
9	92 = 3
16	16 = 4
25	25½ = 5

x	$x^{\frac{1}{3}} \left[\chi(1\div 3) \right]$
1	2/- 1
8	83 = 2
27	27 ³ = 3
64	643=4
125	125 3= 5

Feb 10-10:00 AM

WHAT DO YOU THINK THE EXPONENT $\frac{1}{2}$ MEANS?

WHAT DO YOU THINK THE EXPONENT $\frac{1}{3}$ MEANS?

WHAT DO YOU THINK $a^{\frac{1}{4}}$ AND $a^{\frac{1}{5}}$ MEAN? (TEST YOUR PREDICTIONS WITH A CALCULATOR.)

WHAT DO YOU THINK $a^{\frac{1}{n}}$ MEANS?

In grade 9, you learned that for powers with integral bases and whole 3.74 = 7number exponents:

$$a^m \cdot a^n = a^{m+n}$$

WE CAN EXTEND THIS LAW TO POWERS WITH FRACTIONAL EXPONENTS WITH A **NUMERATOR OF 1:**

$$5^{\frac{1}{2}} \cdot 5^{\frac{1}{2}} = 5^{\frac{1}{2} + \frac{1}{2}}$$

$$= 5^{\frac{1}{2} + \frac{1}{2}}$$

$$= 5^{\frac{1}{2} + \frac{1}{2}}$$

$$= 5^{\frac{1}{2} + \frac{1}{2}}$$

$$\sqrt{5} \cdot \sqrt{5} = \sqrt{25}$$

$$= 5$$

Feb 19-4:10 PM

 $5^{\frac{1}{2}}$ and $\sqrt{5}$ are equivalent expressions; that is, $5^{\frac{1}{2}} = \sqrt{5}$.

$$\times$$
 $\frac{1}{n} = \sqrt{\times}$

$$q^{\frac{1}{2}} = \sqrt{q}$$

SIMILARLY...

$$5^{\frac{1}{3}} \cdot 5^{\frac{1}{3}} \cdot 5^{\frac{1}{3}}$$

$$5^{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} = 5^{\frac{1}{3}}$$

$$5^{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} = 5^{\frac{1}{3}}$$

$$= 5$$

Feb 19-4:18 PM

SO...

$$5^{\frac{1}{3}} = \sqrt[3]{5}$$

8. POWERS WITH RATIONAL EXPONENTS WITH **A NUMERATOR OF 1:**

$$x^{\frac{1}{n}} = \sqrt[n]{x}$$

EX.:
$$8^{\frac{1}{3}}$$

$$= \sqrt[3]{8}$$

$$= 2$$

Feb 10-10:00 AM

EXAMPLE:

Evaluate each power without using a calculator.

a)
$$27^{\frac{1}{3}}$$

b)
$$0.49^{\frac{1}{2}}$$

a)
$$27^{\frac{1}{3}}$$
 b) $0.49^{\frac{1}{2}}$ c) $(-64)^{\frac{1}{3}}$ d) $(\frac{4}{9})^{\frac{1}{2}}$ = 3 0.7 - 4

Evaluate each power without using a calculator.

a)
$$1000^{\frac{1}{3}} = 10$$
 b) $0.25^{\frac{1}{2}} = 0.5$

c)
$$(-8)^{\frac{1}{3}} = -2$$
 d) $\left(\frac{16}{81}\right)^{\frac{1}{4}} = \frac{2}{3}$

Feb 20-9:08 AM

NOTE: Because a fraction can be written as a terminating or repeating decimal, we can interpret powers with decimal exponents.

EX.:
$$32^{0.2}$$

$$=32^{\frac{2}{10}}$$

$$=32^{\frac{1}{5}}$$

$$=\sqrt[5]{32}$$

Evaluate
$$100^{0.5}$$
. = $100^{\frac{1}{2}}$
= $\sqrt{100}$

Feb 21-3:43 PM

To give meaning to a power such as $8^{\frac{2}{3}}$, we use the exponent law $(a^m)^n = a^{mn}$.

EX.:
$$8^{\frac{2}{3}}$$
 EX.: $8^{\frac{2}{3}}$ $8^{\frac{1}{3}}$ $= 8^{2 \cdot \frac{1}{3}}$ $= (8^2)^{\frac{1}{3}}$ $= \sqrt[3]{8}$ $= \sqrt[3]{8}$ $= \sqrt[3]{64}$ $= 2^2$ $= 4$

9. POWERS WITH RATIONAL EXPONENTS:

EX.: Evaluate $16^{\frac{3}{2}}$.

Feb 10-10:00 AM

EXAMPLE:

 $(40^{\frac{1}{3}})^{2} (\sqrt[3]{40})^{2} \text{ or } (40^{\frac{1}{3}})^{\frac{1}{3}}$

- a) Write $40^{\frac{2}{3}}$ in radical form in 2 ways. 40^{2}
- **b**) Write $\sqrt{3^5}$ and $(\sqrt[3]{25})^2$ in exponent form.

a)
$$40^{\frac{2}{3}} = (\sqrt[3]{40})^2 \text{ or } \sqrt[3]{40^2}$$

b)
$$\sqrt{3^5} = 3^{\frac{5}{2}}$$
 and $(\sqrt[3]{25})^2 = 25^{\frac{2}{3}}$

Calculator 4 (2/5)

- a) Write $26^{\frac{2}{5}}$ in radical form in 2 ways. $\sqrt[5]{26^2}$ $(\sqrt[5]{26})^2$
- **b**) Write $\sqrt{6^5}$ and $(\sqrt[4]{19})^3$ in exponent form.

SOLUTION:

a)
$$(\sqrt[5]{26})^2$$
 or $\sqrt[5]{26^2}$

b)
$$6^{\frac{5}{2}}$$
, $19^{\frac{3}{4}}$

Feb 21-3:28 PM

EXAMPLE:

Evaluate.

a)
$$0.04^{\frac{3}{2}} = 0.008$$
 b) $27^{\frac{4}{3}} = 81$

c)
$$(-32)^{0.4}$$
 d) $1.8^{1.4}$ $1.8^{1.4}$ $1.8^{1.5}$ $1.8^{1.4}$ $1.8^{1.5}$ $1.8^{1.5}$ $1.8^{1.5}$ $1.8^{1.5}$ $1.8^{1.5}$ $1.8^{1.5}$ $1.8^{1.5}$ $1.8^{1.5}$

SOLUTION:

a)
$$0.04^{\frac{3}{2}} = \left(0.04^{\frac{1}{2}}\right)^3$$

= $\left(\sqrt{0.04}\right)^3$
= 0.2^3
= 0.008

Feb 21-3:50 PM

c) The exponent
$$0.4 = \frac{4}{10} \text{ or } \frac{2}{5}$$

So, $(-32)^{0.4} = (-32)^{\frac{2}{5}}$

$$= \left[(-32)^{\frac{1}{5}} \right]^2$$

$$= \left(\sqrt[5]{-32} \right)^2$$

$$= (-2)^2$$

$$= 4$$

d) 1.8^{1.4}

Use a calculator.

$$1.8^{1.4} = 2.2770...$$

Feb 21-3:48 PM

YOU TRY!

Evaluate.

a)
$$0.01^{\frac{3}{2}} = (0.1)^{3}$$

b) $(-27)^{\frac{4}{3}} = (-3)^{4}$
 $= 81$
c) $81^{\frac{3}{4}} = 3^{3}$
d) $0.75^{1.2} = 0.708$

c)
$$81^{\frac{3}{4}} = \frac{3}{27}$$
 d) $0.75^{1.2} = 0.708$

SOLUTION:

a) 0.001 b) 81 c) 27 d) 0.7080...

EXAMPLE:

Biologists use the formula $b = 0.01m^{\frac{5}{3}}$ to estimate the brain mass, b kilograms, of a mammal with body mass m kilograms. Estimate the brain mass of each animal.

- a) a husky with a body mass of 27 kg b = 0.
- b) a polar bear with a body mass of 200 kg

SOLUTION:

Use the formula $b = 0.01 m^{\frac{2}{3}}$.

a) Substitute: m = 27

$$b = 0.01(27)^{\frac{2}{3}}$$

Use the order of operations. Evaluate the power first.

$$b = 0.01 (\sqrt[3]{27})^2$$

$$b = 0.01(3)^2$$

$$b = 0.01(9)$$

$$b = 0.09$$

The brain mass of the husky is approximately 0.09 kg.

Feb 21-3:57 PM

b) Substitute: m = 200

$$b = 0.01 (200)^{\frac{2}{3}}$$

Use a calculator.

$$b = 0.01(200) \wedge (2/3)$$

0.01(200)^(2/3) 0.341995189

The brain mass of the polar bear is approximately 0.34 kg.

Use the formula $b = 0.01m^{\frac{2}{3}}$ to estimate the brain mass of each animal.

- a) a moose with a body mass of 512 kg $b = 0.01(512) \land (2/3)$ = 0.64 kg
- b) a cat with a body mass of $\frac{1.408}{1.408}$ 5 kg $b = 0.01(5) \land (2/3)$ = 0.03 kg

Feb 21-3:57 PM

SOLUTION:

- a) approximately 0.64 kg
- b) approximately 0.03 kg

CONCEPT REINFORCEMENT:

FPCM 10:

Page 227: #3 to #16

Page 228: #17 to #21

page 221 1, 3, 4, 6a, 7b, 8, 9 & 11 🗸

Feb 10-8:24 AM