Evaluate Without calc.

a)
$$\sqrt[3]{1000}$$
 Write as a power.

b) $\sqrt[35]{3} = \sqrt[3]{5}$
c) $\sqrt[4]{16}$
c) $\sqrt[325]{3} = \sqrt[3]{5}$
c) $\sqrt[4]{16}$
c) $\sqrt[3]{3}$
c) $\sqrt[4]{16}$
c) $\sqrt[3]{3}$

Recipiocals

Two numbers that multiply to give you 1 are reciprocals

Example:

(3)
$$\left(\frac{1}{3}\right) = 1$$

(23)
$$\left(\frac{1}{2^{2}}\right) = 1$$
 5

(-6)
$$(-\frac{1}{\varphi}) = 1$$

$$\left(\frac{4}{7}\right) \left(\right) = 1$$

We define powers with negative exponents so that previously developed properties such as:

Product of powers law: $a^m \cdot a^n = a^{m+n}$

Zero rule: $a^0 = 1$

Example:

Apply these properties. $(5^{-2})(5^2) = 5^{-2+2}$

$$(3)(3) = 5^0$$

$$\left(\frac{1}{25}\right)\left(\frac{25}{1}\right)=1$$

Since the product of 5^{-2} and 5^2 is 1, then 5^{-2} and 5^2 are reciprocals.

$$\left(\chi^{3}\right)_{\chi^{5}}\left(\chi^{2}\right)$$

$$\left| \left(5^{-2} \right) \left(5^2 \right) \right| = 5^0 = 1$$

Powers with Negative Exponents

When x is any non-zero number and n is a rational number, x^{-n} is the reciprocal of x^n .

That is,
$$x^{-n} = \frac{1}{x^n}$$
 and $\frac{1}{x^{-n}} = x^n$, $x \neq 0$

$$\chi^{-n} = \frac{1}{\chi^{n}}$$

$$\frac{1}{\chi^{n}} = \chi^{n}$$

4.5 Negative Exponents and Reciprocals

$$\frac{5^{-2}}{5^{-2}} = 0.04$$
 $\frac{1}{5^{2}} = \frac{1}{25} = 0.04$





