February 13, 2020

UNIT 1: ROOTS AND POWERS

SECTION 4.6: APPLYING THE EXPONENT LAWS

K. Sears
NUMBERS, RELATIONS AND FUNCTIONS 10

WHAT'S THE POINT OF TODAY'S LESSON?

We will continue working on the NRF 10 Specific Curriculum Outcome (SCO) "Algebra and Numbers 3" OR "AN3" which states:

"Demonstrate an understanding of powers with integral and rational exponents."

What does THAT mean???

SCO AN3 means that we will:

* apply the 6 exponent laws you learned in grade 9:

$$a^0 = 1$$

$$(\mathbf{a}^{\mathbf{m}})(\mathbf{a}^{\mathbf{n}}) = \mathbf{a}^{\mathbf{m}+\mathbf{n}}$$

$$\mathbf{a}^{\mathbf{m}} \div \mathbf{a}^{\mathbf{n}} = \mathbf{a}^{\mathbf{m} - \mathbf{n}}$$

$$(a^{m})^{n} = a^{mn}$$

$$(ab)^m = a^m b^m$$

$$(\mathbf{a} \div \mathbf{b})^{n} = \mathbf{a}^{n} \div \mathbf{b}^{n}$$

- * use patterns to explain $a^{-n} = \frac{1}{a^n}$ and $a^{\frac{1}{n}} = \sqrt[n]{a}$
- * apply all exponent laws to evaluate a variety of expressions
- * express powers with rational exponents as radicals and vice versa
- * identify and correct errors in work that involves powers

EXPONENT LAWS (separate sheet):

- 1. Zero Exponent Law: $a^0 = 1$
- 2. Product of Powers: $(a^m)(a^n) = a^{m+n}$
- 3. Quotient of Powers: $a^m \div a^n = a^{m-n}$
- 4. Power of a Power: $(a^m)^n = a^{mn}$
- 5. Power of a Product: $(ab)^m = a^m b^m$
- 6. Power of a Quotient: $(a \div b)^n = a^n \div b^n$

7. MULTIPLICATION PROPERTY OF RADICALS:

8. POWERS WITH RATIONAL EXPONENTS WITH A NUMERATOR OF 1:

$$x^{\frac{1}{n}} = \sqrt[n]{x}$$

EX.:
$$\frac{1}{8^{\frac{3}{3}}}$$
$$=\sqrt[3]{8}$$
$$=2$$

9. POWERS WITH RATIONAL EXPONENTS:

EX.: Evaluate $16^{\frac{3}{2}}$.

10. POWERS WITH NEGATIVE EXPONENTS:

$$x^{-n} = \frac{1}{x^n} \qquad AND \qquad \frac{1}{x^{-n}} = x^n$$

EX.:
$$4^{-2}$$
 EX.: $\frac{1}{5^{-2}}$ = $\frac{1}{16}$ = 5^{2} = 25

Basically, remember to take the reciprocal of the ENTIRE base and change the negative exponent to a positive exponent.

EX.:
$$\left(-\frac{3}{4}\right)^{-3}$$

LAST MINUTE QUESTIONS??? (page 236, #1 to #8)

QUIZ TIME! (Sections 4.4 and 4.5 - 10 to 15 min.)

4.6 - APPLYING EXPONENT LAWS:

Let's build gradually on what we knew in grade 9...

For example:

$$= (2^2)(2^6) \\ = 2^8$$

= 256

APPLYING EXPONENT LAWS:

Let's build gradually on what we knew in grade 9...

For example:

$$(2^{2})(2^{-6})$$

$$= 2^{-4}$$

$$= \frac{1}{2^{4}}$$

$$= \frac{1}{16}$$

APPLYING EXPONENT LAWS:

Let's build gradually on what we knew in grade 9...

For example:

e:
$$\left[\left(2^{2} \right) \left(2^{-6} \right) \right]^{\frac{-3}{2}}$$

$$= \left(2^{-4} \right)^{\frac{-3}{2}}$$

$$= \left(\frac{1}{2^{4}} \right)^{\frac{-3}{2}}$$

$$= \left(\frac{1}{16} \right)^{\frac{-3}{2}}$$

$$= 16^{\frac{3}{2}}$$

$$= \left(\sqrt{16} \right)^{3}$$

$$= 4^{3}$$

$$= 64$$

EXAMPLE:

a)
$$0.3^{-3} \cdot 0.3^{5}$$

$$\mathbf{b}) \left[\left(-\frac{3}{2} \right)^{-4} \right]^2 \cdot \left[\left(-\frac{3}{2} \right)^2 \right]^3$$

c)
$$\frac{(1.4^3)(1.4^4)}{1.4^{-2}}$$

$$\mathbf{d}) \left(\frac{7^{\frac{2}{3}}}{7^{\frac{1}{3}} \cdot 7^{\frac{5}{3}}} \right)^{6}$$

SOLUTIONS:

a)
$$0.3^{-3} \cdot 0.3^{5} = 0.3^{(-3)+5}$$

= 0.3^{2}

$$\mathbf{b}) \left[\left(-\frac{3}{2} \right)^{-4} \right]^2 \cdot \left[\left(-\frac{3}{2} \right)^{2} \right]^3 = \left(-\frac{3}{2} \right)^{-8} \cdot \left(-\frac{3}{2} \right)^6$$

$$= \left(-\frac{3}{2} \right)^{-2}$$

$$= \left(-\frac{2}{3} \right)^2$$

c)
$$\frac{(1.4^{3})(1.4^{4})}{1.4^{-2}}$$

$$= \frac{1.4^{3+4}}{1.4^{-2}}$$

$$= \frac{1.4^{7}}{1.4^{-2}}$$

$$= 1.4^{7-(-2)}$$

$$= 1.4^{9}$$

$$= (\frac{2^{\frac{3}{3}}}{6^{\frac{6}{3}}})^{6}$$

$$= (\frac{2^{\frac{3}{3}}}{6^{\frac{6}{3}}})^{6}$$

$$= (\frac{2^{\frac{3}{3}}}{6^{\frac{6}{3}}})^{6}$$

$$= (\frac{2^{\frac{3}{3}}}{6^{\frac{6}{3}}})^{6}$$

$$= (7^{\frac{4}{3}})^{6}$$

$$= 7^{-8}$$

$$= \frac{1}{7^{8}}$$

a)
$$0.8^{2} \cdot 0.8^{-7}$$

b) $\left[\left(-\frac{4}{5} \right)^{2} \right]^{-3} \div \left[\left(-\frac{4}{5} \right)^{4} \right]^{-5}$
 $\frac{1}{0.8^{5}} \left(\frac{4}{5} \right)^{-5}$
 $\left(\frac{5}{4} \right)^{5}$
c) $\frac{(1.5^{-3})^{-5}}{1.5^{5}} \left(-\frac{4}{5} \right)^{-1} \div \left(-\frac{4}{5} \right)^{-20}$
 $\frac{9^{\frac{5}{4}} \cdot 9^{-\frac{1}{4}}}{9^{\frac{3}{4}}} \left(-\frac{4}{5} \right)^{-6-(-20)}$
d) $\frac{9^{\frac{3}{4}} \cdot 9^{-\frac{1}{4}}}{9^{\frac{3}{4}}} \left(-\frac{4}{5} \right)^{-6-(-20)}$
 $\frac{9^{\frac{1}{4}} \cdot 9^{-\frac{1}{4}}}{9^{\frac{3}{4}}} \left(-\frac{4}{5} \right)^{-\frac{1}{4}}$

[Answers: a)
$$\frac{1}{0.8^5}$$
 b) $\left(-\frac{4}{5}\right)^{14}$

c)
$$1.5^{10}$$
 d) $9^{\frac{1}{4}}$]

EXAMPLE:

a)
$$(x^{3}y^{2})(x^{2}y^{-4}) = \chi^{3} \chi^{2} y^{2} y^{-4}$$
 b) $\frac{10a^{5}b^{3}}{2a^{2}b^{-2}}$

$$= \chi^{5} y^{-2} = \frac{10}{2} \frac{\alpha^{5}}{\alpha^{2}} \frac{b^{3}}{b^{-2}}$$

$$= \frac{\chi^{5}}{\sqrt{2}} = 5 \frac{5^{-2}}{\alpha} \left[b^{3-(-2)} \right]$$

$$= 5a^{3} b^{5}$$

SOLUTIONS:

a)
$$(x^{3}y^{2})(x^{2}y^{-4}) = x^{3} \cdot y^{2} \cdot x^{2} \cdot y^{-4}$$

 $= x^{3} \cdot x^{2} \cdot y^{2} \cdot y^{-4}$
 $= x^{3+2} \cdot y^{2+(-4)}$
 $= x^{5} \cdot y^{-2}$
 $= x^{5} \cdot \frac{1}{y^{2}}$
 $= \frac{x^{5}}{y^{2}}$

b)
$$\frac{10a^5b^3}{2a^2b^{-2}} = \frac{10}{2} \cdot \frac{a^5}{a^2} \cdot \frac{b^3}{b^{-2}}$$
$$= 5 \cdot a^{5-2} \cdot b^{3-(-2)}$$
$$= 5 \cdot a^3 \cdot b^5$$
$$= 5a^3b^5$$

HOW I WOULD ACTUALLY SHOW MY WORK:

a)
$$(x^{3}y^{2})(x^{2}y^{-4})$$

 $X^{3} \cdot X^{2} \cdot y^{2} \cdot y^{-4}$
 $X^{5} \cdot y^{2}$
 $X^{5} \cdot y^{2}$

b)
$$\frac{10a^5b^3}{2a^2b^{-2}}$$

YOU TRY!

$$\alpha) m^4 \cdot m^2 \cdot n^{-2} \cdot n^3$$

= $m^6 n$

a)
$$m^4 n^{-2} \cdot m^2 n^3$$

a)
$$m^4 n^{-2} \cdot m^2 n^3$$

b) $\frac{6x^4y^{-3}}{14xy^2} = \frac{6}{14} \frac{x^4}{x} \frac{y^{-3}}{y^2}$
 $= \frac{3}{7} x^3 y^{-5}$
 $= \frac{3x^3}{7y^5}$

[Answers: a)
$$m^6 n$$
 b) $\frac{3x^3}{7y^5}$]

EXAMPLE:

a)
$$(8a^3b^6)^{\frac{1}{3}} = 8^{\frac{1}{3}}$$

c)
$$\frac{4a^{-2}b^{\frac{2}{3}}}{2a^2b^{\frac{1}{3}}}$$

b)
$$(x^{\frac{3}{2}}y^2)(x^{\frac{1}{2}}y^{-1})$$

$$\mathbf{d}) \left(\frac{100a}{25a^5b^{-\frac{1}{2}}} \right)^{\frac{1}{2}}$$

SOLUTIONS:

a)
$$(8a^3b^6)^{\frac{1}{3}} = 8^{\frac{1}{3}} \cdot a^{3(\frac{1}{3})} \cdot b^{6(\frac{1}{3})}$$

 $= (2^3)^{\frac{1}{3}} \cdot a^1 \cdot b^2$
 $= 2ab^2$

b)
$$(x^{\frac{3}{2}}y^2)(x^{\frac{1}{2}}y^{-1}) = x^{\frac{3}{2}} \cdot x^{\frac{1}{2}} \cdot y^2 \cdot y^{-1}$$

= $x^{\frac{3}{2} + \frac{1}{2}} \cdot y^{2 + (-1)}$
= x^2y

c)
$$\frac{4a^{-2}b^{\frac{2}{3}}}{2a^{2}b^{\frac{1}{3}}} = \frac{4}{2} \cdot \frac{a^{-2}}{a^{2}} \cdot \frac{b^{\frac{2}{3}}}{b^{\frac{1}{3}}}$$
$$= 2 \cdot a^{(-2) - 2} \cdot b^{\frac{2}{3} - \frac{1}{3}}$$
$$= 2 \cdot a^{-4} \cdot b^{\frac{1}{3}}$$
$$= \frac{2b^{\frac{1}{3}}}{a^{4}}$$

$$\mathbf{d}) \left(\frac{100a}{25a^5b^{-\frac{1}{2}}} \right)^{\frac{1}{2}} = \left(\frac{100}{25} \cdot \frac{a^1}{a^5} \cdot \frac{1}{b^{-\frac{1}{2}}} \right)^{\frac{1}{2}}$$

$$= \left(4 \cdot a^{1-5} \cdot b^{\frac{1}{2}} \right)^{\frac{1}{2}}$$

$$= \left(4 \cdot a^{-4} \cdot b^{\frac{1}{2}} \right)^{\frac{1}{2}}$$

$$= 4^{\frac{1}{2}} \cdot a^{(-4)\left(\frac{1}{2}\right)} \cdot b^{\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)}$$

$$= 2 \cdot a^{-2} \cdot b^{\frac{1}{4}}$$

$$= \frac{2b^{\frac{1}{4}}}{2}$$

HOW I WOULD ACTUALLY SHOW MY WORK:

a)
$$(8a^3b^6)^{\frac{1}{3}}$$

b)
$$(x^{\frac{3}{2}}y^2)(x^{\frac{1}{2}}y^{-1})$$

HOW I WOULD ACTUALLY SHOW MY WORK:

c)
$$\frac{4a^{-2}b^{\frac{2}{3}}}{2a^2b^{\frac{1}{3}}}$$

$$\mathbf{d}) \left(\frac{100a}{25a^5b^{-\frac{1}{2}}} \right)^{\frac{1}{2}}$$

[Answers: a)
$$125a^{6}b^{3}$$
 b) $\frac{x}{y}$
c) $\frac{4y^{3}}{x^{2}}$ d) $\frac{5}{xy^{2}}$

CONCEPT REINFORCEMENT:

FPCM 10:

Page 241: #3 to #6

Page 242: #7 to #11, #14 to #17 & #19

Page 243: #21 & #22

UNIT 1 TEST PREPARATION

FPCM 10:

Page 197: Skills Summary (3.1 / 3.2)
Page 198: Review Questions (3.1 / 3.2)

Page 201: Practice Test (#1 & #3)

Page 244: Study Guide

Page 245: Skills Summary

Pages 246 to 248: Review Questions

Page 249: Practice Test