

Numbers, Relations & Functions 10

Name

Mutilpying Polynomials

Date

Find each product.

1)
$$5(6b+3)$$

2)
$$8(6r+3)$$

3)
$$2(8x + y)$$

4)
$$5mn(3m + 2n)$$

5)
$$7(x-7y)$$

6)
$$2mn(8m-2n)$$

7)
$$(4x-2y)(6x+6y)$$

8)
$$(6x + 3y)(4x - 7y)$$

9)
$$(2x+5y)(7x-8y)$$

10)
$$(3x + 6y)(5x - 8y)$$

11)
$$(5x-4y)(5x^2-4xy+6y^2)$$

12)
$$(8x - 7y)(6x^2 + 8xy + 3y^2)$$

13)
$$(6a^2 - 2a - 3)(8a + 2)$$

14)
$$(2k^2 + 8k - 2)(7k + 4)$$

15)
$$(7a^2 - 2ab + 2b^2)(a^2 - 2ab - 8b^2)$$

16)
$$(x^2 - 4xy + 2y^2)(x^2 - 2xy - 7y^2)$$

Numbers, Relations & Functions 10

Name_

Date____

Mutilpying Polynomials

Find each product.

1)
$$5(6b+3)$$

$$30b + 15$$

3)
$$2(8x + y)$$

$$16x + 2y$$

7)
$$(4x-2y)(6x+6y)$$

24x2 + 12xy-12y2

9)
$$(2x+5y)(7x-8y)$$

11)
$$(5x-4y)(5x^2-4xy+6y^2)$$

13)
$$(6a^2 - 2a - 3)(8a + 2)$$

 $48a^3 - 4a^2 - 28a - 6$

15)
$$(7a^2 - 2ab + 2b^2)(a^2 - 2ab - 8b^2)$$

 $7a^4 - 16a^3b - 50a^2b^2 + 12ab^3 - 16b^4$

2)
$$8(6r+3)$$

4)
$$5mn(3m + 2n)$$

$$15m^2N + 10mn^2$$

6)
$$2mn(8m-2n)$$

 $16 m^2 n - 4mn^2$

8)
$$(6x+3y)(4x-7y)$$

$$24x^{2} - 30xy - 21y^{2}$$

10)
$$(3x+6y)(5x-8y)$$

12)
$$(8x - 7y)(6x^2 + 8xy + 3y^2)$$

$$48x^3 + 21x^2y - 32xy^2 - 21y^3$$

14)
$$(2k^2 + 8k - 2)(7k + 4)$$

16)
$$(x^2 - 4xy + 2y^2)(x^2 - 2xy - 7y^2)$$

$$x^4 - 6x^3y + 3x^2y^2 + 24xy^3 - 14y^4$$

Expand and Simplify
$$(x-3)^{2} - (x+2)^{2}$$

$$(x-3)^{(x-3)} - (x+2)^{(x+2)}$$

$$(x-3)^{(x-3)} - (x+2)^{(x+2)}$$

$$(x^{2}-3x-3x+9) - (x^{2}+2x+3x+4)$$

$$(x^{2}-6x+9) - (x^{2}+4x+4)$$

$$(x^{2}-6x+9) - (x^{2}+4x+4)$$

$$(x^{2}-6x+9) - (x^{2}+4x+4)$$

$$(x^{2}-6x+9) - (x^{2}+4x+4)$$

1)
$$[(-2)^3 \times (-2)^2] - [(-3)^3 \cdot (-3)^2]$$

2)
$$\frac{\left[(2 \times 2^2)^5 - (5^6 \div 5^4)^4\right]^0}{(3^3 \times 3)^2 - (3^6 \div 3^4)^2}$$

3)

Simplify the following using laws of exponents

a)
$$(3xy^2)^4$$

b)
$$\frac{(12r^{12}t^3)}{(3r^{10}t^2)}$$

Write each product as a power, then evaluate.

#2

a) (4)(4)(4)

(4)³ = 64

b) (-6)(-6)(-6)(-6)

$$(-1)^{10247} = -1$$
 $(-1)^{29584} = 1$

Evaluating powers when the base is negative...

$$- (-2)^{3} = +$$

$$- (-2)^{4} = +$$

$$- (-2)^{4} = +$$

$$- (-2)^{5} = -$$

$$(-2)^{4} = +$$

$$-\lambda^5 = -$$

$$-\left(-5\right)_{\mathcal{C}} = -$$

1. -4²

Click here to check your answer. $2. (-3)^2$

Click here to check your answer. 3. $(-2)^3$

Click here to check your answer.

Warm Up Grade 9

October 1, 2010

Write the following as a repeated multiple and evaluate

Write as a power then evaluate

$$^{2)}$$
 (6)(6)(6)(6)

Express as a power of 2.

$$2^{7} = 128$$

$$128 = 2$$

$$32$$

$$32$$

$$128 = 2$$

Avogadro's number = 6.0221415×10^{23}

The speed of light = $2.99792458 \times 10^8 \, \text{m} / \text{s}$

Temperature of the Sun's Core = 1.5×10^7 °C

since 15000000 kelvin = 14999726.85 degree Celsius

Distance related to Powers of 10 http://vimeo.com/819138

Number in Words	Standard Form	Power
One billion	1 000 000 000	10 ⁹
One hundred million	100 000 000	108
Ten million	10 000 000	10 ⁷
One million	1 000 000	10 ⁶
One hundred thousand	100 000	10 ⁵
Ten thousand	10 000	10 ⁴
One thousand	1 000	10 ³
One hundred	100	10 ²
Ten	10	10 ¹
One	1	10 ⁰

^{*}Image taken from "Math Makes Sense 9", page 59, copyright to pearson education Canada

Any number (except 0) with an exponent 0 will equal 1

$$2^{0} = 1$$

 $13^{0} = 1$
 $199^{0} = 1$
 $(-6)^{0} = 1$

Why???

Zero Exponent LAW

A power with an interger base, not including 0, and an exponent of 0 is equal to 1

Writing Numbers Using Powers of Ten

A place value chart may help

Write 96 713 as a power of 10

Ten Thousands	Thousands	Hundreds	Tens	Ones
		(X		

Erase to see solutions

$$= (9 \times 1)$$

378 425

Write in powers of ten:

$$(3\times10^{5}) + (7\times10^{4}) + (8\times10^{3})$$

+ $(4\times10^{3}) + (2\times10^{4})$
+ (5×10^{6})

$$(5\times10^2) + (8\times10^7) + (3\times10^5) + (1\times10^0)$$

Law of exponents

$$\Box \chi^{\circ} =$$

$$(\chi^a) (\chi^3) = \chi^5$$

$$3 \frac{\chi^{3}}{\chi^{4}} = \chi^{3}$$

$$6 \left(\frac{\chi^{3}}{y^{5}}\right)^{3} = \frac{\chi^{6}}{y^{6}}$$

Try this

Evaluate each expression

- a) 5^0 b) $-(5)^0$ c) $(-5)^0$ d) -5^0

23

BEDMAS

$$[3 + (-3)^{2} - 5(3 - 7)^{2}] + 1$$

$$[3 + (-3)^{2} - 5(-4)^{2}] + 1$$

$$[3 + 9 - 5(-4)^{2}] + 1$$

$$[3 + 9 - 5(-4)^{2}] + 1$$

$$[3 + 9 - 5(-4)^{2}] + 1$$

$$[3 + 9 - 5(-4)^{2}] + 1$$

$$[4 - 80] + 1$$

$$[6 + 4]$$

$$[6 + 4]$$

$$\frac{-15+3-11}{3\times 2-7}$$

BEDMAS

$$-5^2+(4+(-2)^2-3)^3$$

$$\frac{3^2(5^0+2+2^2)}{2(5+4^2)}$$

2)
$$\frac{4^2(3^4 \div 2^0)}{2^4(3^4 - 2^0)}$$

3)
$$\frac{2^4(4^3 \div 2^2) - 4^0}{3(3^4 + 2^2)}$$

$$\frac{3^2(5^0+2+2^2)}{2(5+4^2)}$$

2)
$$\frac{4^2(3^4 \div 2^0)}{2^4(3^4 - 2^0)}$$

3)
$$\frac{2^4(4^3 \div 2^2) - 4^0}{3(3^4 + 2^2)}$$

Complete the following review questions:

Page 87-89

Work Sheet: All Questions

&

Extended Laws of Exponents

(No Negative)

Date

Simplify. Your answer should contain only positive exponents.

1)
$$4a^2 \cdot 5a^4$$

2)
$$3b \cdot 8b^3$$

3)
$$7x^3 \cdot x^2$$

4)
$$5x^5 \cdot 8x^3$$

$$5)\frac{6a^4}{3a^3}$$

6)
$$\frac{5n^{20}}{8n^4}$$

7)
$$\frac{12n^4}{8n}$$

8)
$$\frac{7r}{6r}$$

9)
$$(8n)^4$$

10)
$$(7k)^3$$

11)
$$(6k)^2$$

12)
$$(5x^2)^4$$

13)
$$4b^8 \cdot 2b^3$$

14)
$$4m \cdot 3m$$

15)
$$6x^3 \cdot 3x^3$$

16)
$$7v \cdot 8v^2$$

17)
$$\frac{6n^3}{2n^3}$$

$$18) \frac{12x^{21}}{2x^{13}}$$

19)
$$\frac{15x^{13}}{3x^4}$$

$$(20)^{40b^{44}} \frac{40b^{44}}{4b^{21}}$$

(No Negative)

21)
$$(2m^2)^4$$

22)
$$(4x^2)^3$$

23)
$$(8n^4)^4$$

24)
$$(6x^4)^3$$

25)
$$\frac{8r^3 12r^3}{(2r)^{4}}$$

$$(9v^8)^2 \frac{(9v^8)^2}{(3vv^3)^3}$$

$$27)^{8} \frac{x^{12} - 3x^{4}}{(2x^{4})^{3}}$$

28)
$$\frac{(3n^4)^3 \bullet (3n^4)^4}{(3n)^4}$$

$$29) \frac{(3n^3)^3 \cdot n^3}{(3n^2)^2}$$

30)
$$\left(\frac{2v^2 \cdot 4v^5}{2v^2}\right)^2$$

$$31) \left(\frac{3p^3 \cdot p^2}{3p^3} \right)^0$$

32)
$$\frac{3a^7 \cdot 4a^2}{a^4}$$

33)
$$\frac{(2n^3)^5}{4n^3 \cdot (n^4)^2}$$

$$34)^{10} \frac{p^8 \cdot p^3 \cdot 2p^{12}}{4p^4}$$

$$35) \; \frac{\left(x^2\right)^5}{x^2x^2}$$

$$36) \ \frac{(3n^4)^2}{3n^2 \cdot 3n^2}$$

$$37) \left(\frac{3n^5}{3n^2 \cdot n} \right)^4$$

38)
$$\frac{(6x^2) (2x^5)^4}{(2x^3 \cdot x^4)^3 (x^0)}$$

Notes on Laws of Exponent

Exponent Law for a Product of Powers

To multiply powers with the same base, add the exponents.

$$a^m x a^n = a^{m+n}$$

must be the same base

The variable "a" is any interger, except 0.

The variable "m" and "n" are any whole numbers.

Exponent Law for a Quotient of Powers

To divide powers with the same base, subtract the exponents.

$$a^m \div a^n = a^{m-n}$$

Where
$$m \ge n$$

must be the same base

The variable "a" is any interger, except 0.

The variable "m" and "n" are any whole numbers.

Exponent Law for a Power of a Power

To raise a power to a power, multiply the exponents.

$$(a^m)^n = a^{mn}$$

The variable "a" is any integer, except 0.

The variable "m" and "n" are any whole numbers.

Exponent Law for a Power of a Product

$$(ab)^m = a^m b^m$$

The variables "a" and "b" are any integer, except 0.

The variable "m" is any whole numbers.

Exponent Law for a Power of a Quotient

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

BUT b≠0

The variables "a" and "b" are any integer, except 0.

The variable "m" is any whole numbers.

Extra Material

Write each expression as a product and then evaluate the following:

1)
$$3^2 \times 3^2$$

$$2^{2} \times 2^{5}$$

Do you notice anything???

$$^{3)} (-5)^2 \times (-5)^4$$

Write each of the following as a single power and then evaluate.

1)
$$7^2 \times 7^4$$

2)
$$(-2)^5 \times (-2)^3$$
 3) $4^5 \times 4$

3)
$$4^5 \times 4$$

What happens when we divide powers with the same base?

1) $\frac{2^6}{2^2}$

 $\frac{7^9}{7^4}$

Do you notice anything???

$$\frac{(-5)^7}{(-5)^3}$$

Remember to always use BEDMAS when evaluating

Simplify first (using exponent law I) THEN Evaluate each of the following:

1)
$$3^{10} \div 3^6 + 3^2$$

1)
$$3^{10} \div 3^6 + 3^2$$
 2) $-2^3(2^9 \div 2^7) - 2^1$

(BEDMAS

3)
$$\frac{10^{1003}}{10^{1000}}$$
 - 1

October 12, 2012

Express each as a single power and then evaluate

1)
$$2^{20} \times 2^3 \div 2^7$$
 -(-5) $^7 \times (-5)^2$ 3) $\frac{8^{121}}{8^{118}}$

Evaluate: Simplify then Evaluate

4)
$$15(15^{12} \div 15^9) \div 5 + 1$$

Write the following number with powers of ten

5) 21 045

Write the following number in standard form

6)
$$(7 \times 10^{1}) + (8 \times 10^{6}) + (3 \times 10^{0}) + (7 \times 10^{5}) + (1 \times 10^{2})$$

Master 2.20 **Extra Practice 4**

Lesson 2.4: Exponent Laws 1

1. Write each product as a single power.

a)
$$4^3 \times 4^2$$

b)
$$5^{\circ} \times 5^{\circ}$$

c)
$$(-2)^2 \times (-2)^4$$

d)
$$-6^3 \times 6$$

e)
$$(-7)^0 \times (-7)^0$$

a)
$$4^3 \times 4^2$$

b) $5^0 \times 5^0$
c) $(-2)^2 \times (-2)^4$
d) $-6^3 \times 6^1$
e) $(-7)^0 \times (-7)^2$
f) $(-9)^6 \times (-9)^3$

2. Write each quotient as a single power.

a)
$$8^7 \div 8^5$$

b)
$$10^4 \div 10^0$$

c)
$$(-1)^6 \div (-1)^3$$

d)
$$\frac{-3^4}{3^4}$$

e)
$$\frac{(-9)^{10}}{(-9)^5}$$

f)
$$\frac{11^9}{11^6}$$

3. Express as a single power.

a)
$$2^3 \times 2^6 \div 2^9$$

a)
$$2^3 \times 2^6 \div 2^9$$
 b) $(-5)^8 \div (-5)^4 \times (-5)^3$ c) $\frac{6^3 \times 6^5}{6^2 \times 6^4}$

c)
$$\frac{6^3 \times 6^5}{6^2 \times 6^4}$$

4. Simplify, then evaluate. a) $2^2 - 2^0 \times 2 + 2^3$

a)
$$2^2 - 2^0 \times 2 + 2^3$$

b)
$$(-2)^6 \div (-2)^5 - (-2)^5 \div (-2)^3$$
 c) $-2^2(2^3 \div 2^1) - 2^3$

c)
$$-2^2(2^3 \div 2^1) - 2^3$$

Simplify, then evaluate.

a)
$$4^3 \div 4^2 + 2^4 \times 3^2$$

b)
$$3^2 + 4^2 \times 4^1 \div 2^3$$

Simplify, then evaluate.
a)
$$4^3 \div 4^2 + 2^4 \times 3^2$$
 b) $3^2 + 4^2 \times 4^1 \div 2^3$ c) $\frac{3^4}{3^3} + \frac{4^2 \times 4^0}{2^4}$

- 6. Write each relationship as a product of powers or a quotient of powers.
 - a) One million is 1000 times as great as one thousand.
 - b) One billion is 1000 times as great as one million.
 - c) One hundred is one-tenth of one thousand.
 - d) One is one-millionth of one million.
 - e) One trillion is 1000 times as great as one thousand million.
- 7. Identify, then correct any errors in these answers.

Explain how you think the errors occurred.
a)
$$5^3 \times 5^2 = 5^6$$
 b) $2^3 \times 4^2 = 8$

b)
$$2^3 \times 4^2 = 8^5$$

c)
$$(-3)^8 \div (-3)^4 = (-3)^4$$

d)
$$1^2 \times 1^4 - 1^3 = 1^3$$

d)
$$1^2 \times 1^4 - 1^3 = 1^3$$
 e) $\frac{4^2 \times 4^4}{4^2 \times 4^1} = 4^2$

Fill in the following chart

Power	As Repeated Multiplication	As a Product of Factors	As a power
(3 ²) ⁵			. 17
(4 ²) ³			
[(-2)4]3			

Try this

Express the following as a single power

3)
$$[(-2)^4]^3$$

Evaluate

1)
$$(2^3)^2$$

1)
$$(2^3)^2$$
 2) $(5^2)^3$

3)
$$[(-3)^2]^4$$

Try this

Write as a power

1)
$$[(-5)^3]^7$$
 2) $-(3^5)^4$

$$(3^5)^2$$

3)
$$(4^8)^2$$

What about a power of a quotient?

$$\left(\frac{4}{5}\right)^3$$

Let's Investigate

<u>Step 1</u>) Write the above as a repeated multiplication.

Step 2) Look at the numerators can you express that as a single power

Step 3) Look at the denominators can you express that as a single power

What did you discover?

$$[(-6) \times 4]^2$$

Method 1

Use the exponent law for a power of a product

$$[(-6) \times 4]^2$$

= Erage To see

=

_

Method 2

Use the order of operations

$$[(-6) \times 4]^2$$

= Erice To see

__

You Decide

Try some more (use which ever method you want)

2)
$$-(5 \times 2)^3$$

$$3) \quad \left(\frac{21}{-3}\right)^3$$

$$(5 \times 2)^3 + (2^8 \div 2^5)^4$$

$$[(-4-(-3))^2]^2-(-5^3+2)^3$$

- 6. Answer the questions below using the shape to the right:
 - a) Determine a polynomial for the area of the shape. SHOW ALL WORK (4)

c) Determine the area of the shape when x = 5 cm. SHOW ALL WORK (2)