

Numbers, Relations \& Functions 10
Mutilpying Polynomials

Name \qquad
Date \qquad

Find each product.

1) $5(6 b+3)$
2) $8(6 r+3)$
3) $2(8 x+y)$
4) $5 m n(3 m+2 n)$
5) $7(x-7 y)$
6) $2 m n(8 m-2 n)$
7) $(4 x-2 y)(6 x+6 y)$
8) $(6 x+3 y)(4 x-7 y)$
9) $(2 x+5 y)(7 x-8 y)$
10) $(3 x+6 y)(5 x-8 y)$
11) $(5 x-4 y)\left(5 x^{2}-4 x y+6 y^{2}\right)$
12) $(8 x-7 y)\left(6 x^{2}+8 x y+3 y^{2}\right)$
13) $\left(6 a^{2}-2 a-3\right)(8 a+2)$
14) $\left(2 k^{2}+8 k-2\right)(7 k+4)$
15) $\left(7 a^{2}-2 a b+2 b^{2}\right)\left(a^{2}-2 a b-8 b^{2}\right)$
16) $\left(x^{2}-4 x y+2 y^{2}\right)\left(x^{2}-2 x y-7 y^{2}\right)$

Mutilpying Polynomials
Name \qquad

Find each product.

1) $5(6 b+3)$
2) $8(6 r+3)$

$$
30 b+15
$$

3) $2(8 x+y)$

$16 x+2 y$

5) $7(x-7 y)$
$7 x-49 y$
6) $(4 x-2 y)(6 x+6 y)$
$24 x^{2}+12 x y-12 y^{2}$
7) $(2 x+5 y)(7 x-8 y)$
$14 x^{2}+19 x y-40 y^{2}$
8) $(5 x-4 y)\left(5 x^{2}-4 x y+6 y^{2}\right)$
$25 x^{3}-40 x^{2} y+46 x y^{2}-24 y^{3}$
9) $\left(6 a^{2}-2 a-3\right)(8 a+2)$
$48 a^{3}-4 a^{2}-28 a-b$
10) $\left(7 a^{2}-2 a b+2 b^{2}\right)\left(a^{2}-2 a b-8 b^{2}\right)$
$7 a^{4}-16 a^{3} b-50 a^{2} b^{2}+12 a b^{3}-16 b^{4}$

$48 \mathrm{r}+24$

4) $5 m n(3 m+2 n)$

$$
15 m^{2} n+10 m n^{2}
$$

6) $2 m m(8 m-2 n)$
$16 m^{2} n-4 m n^{2}$
7) $(6 x+3 y)(4 x-7 y)$

$$
24 x^{2}-30 x y-21 y^{2}
$$

10) $(3 x+6 y)(5 x-8 y)$

$$
15 x^{2}+6 x y-48 y^{2}
$$

12) $(8 x-7 y)\left(6 x^{2}+8 x y+3 y^{2}\right)$

$$
48 x^{3}+22 x^{2} y-32 x y^{2}-21 y^{3}
$$

14) $\left(2 k^{2}+8 k-2\right)(7 k+4)$
$14 k^{3}+64 k^{2}+18 k-8$
15) $\left(x^{2}-4 x y+2 y^{2}\right)\left(x^{2}-2 x y-7 y^{2}\right)$
$x^{4}-6 x^{3} y+3 x^{2} y^{2}+24 x y^{3}-14 y^{4}$

Wham lily

Expand and Simplify

$$
\begin{aligned}
& (x-3)^{2}-(x+2)^{2} \\
& (x-3)(x-3)-(x+2)(x+2) \\
& x^{2}-3 x-3 x+9-\left(x^{2}+2 x+2 x+4\right)
\end{aligned}
$$

$$
\left(x^{2}-6 x+9\right)-\left(x^{2}+4 x+4\right)
$$

$$
x^{2}-6 x+9
$$

$$
(-10 x+5
$$

Simplify THEN evaluate

$$
\text { 1) }\left[(-2)^{3} \times(-2)^{2}\right]-\left[(-3)^{3}:(-3)^{2}\right]
$$

$$
\text { 2) } \frac{\left[\left(2 \times 2^{2}\right)^{5}-\left(5^{6}: 5^{4} 4\right]^{0}\right]^{0}}{\left(3^{3} \times 3\right)^{2}-\left(3^{6} ; 3^{4}\right)^{2}}
$$

3)

Simplify the following using laws of exponents
a) $\left(3 x y^{2}\right)^{4}$
b) $\frac{\left(12 r^{12} t^{3}\right)}{\left(3 r^{10} t^{2}\right)}$

Write each roduct as a power fihen evaluateo
\#2

$$
\begin{aligned}
& \text { a) }(4)(4)(4) \\
& (4)^{3} \\
& =64 \\
& \text { b) }(-6)(-6)(-6)(-6)(-6) \\
& (-6)^{5} \\
& =-7776
\end{aligned}
$$

Can you see the difference?

$$
\begin{aligned}
& (-4)^{2} \\
& (-4)(-4)
\end{aligned}
$$

$$
-4^{2}
$$

$$
-4 \times 4
$$

$$
16
$$

$$
-16
$$

what is the base?

$$
\begin{aligned}
& (-4)^{7} \rightarrow \text { base }-4 \\
& -3^{5} \rightarrow \text { base } 3
\end{aligned}
$$

$$
(-1)^{10247}=-1 \quad(-1)^{29584}=1
$$

© Evaluating powers when the base is negative... If the exponent is the answer will be , If the exponent is the answer will be

$$
\begin{array}{l|l}
-(-) \\
-(-2)^{3}=+ & (-2)^{4}=+ \\
-2^{5}=- & \begin{array}{l}
-(+) 6 \\
-(-2)^{6}=-
\end{array}
\end{array}
$$

Warm Up Grade 9

October 1, 2010

Write the following as a repeated multiple and evaluate

1) $(-5)^{4}$
2) -2^{5}
3) $-(7)^{3}$

Write as a power then evaluate

1) $-(-4)(-4)(-4)(-4)(-4)$
2) $(6)(6)(6)(6)(6)$

Express as a power of 2.
 $2^{7}=128$ $128=2$

 $$
32
$$
 (2)

 (2)

Avogadro's number $=6.0221415 \times \mathbf{1 0}^{\mathbf{2 3}}$

The speed of light $=2.99792458 \times 10^{\mathbf{8}} \mathbf{~ m} / \mathrm{s}$

Temperature of the Sun's Core $=1.5 \times 10^{7}{ }^{\mathbf{0}} \mathrm{C}$
since 15000000 kelvin $=14999726.85$ degree Celsius

Number in Words	Standard Form	Power
One billion	1000000000	10^{9}
One hundred million	100000000	10^{8}
Ten million	10000000	10^{7}
One million	1000000	10^{6}
One hundred thousand	100000	10^{5}
Ten thousand	10000	10^{4}
One thousand	1000	10^{3}
One hundred	100	10^{2}
Ten	10	10^{1}
One	1	10^{0}

*Image taken from "Math Makes Sense 9", page 59 , copyright to pearson education Canada

Any number (except 0) with an exponent 0 will equal 1

$$
\begin{aligned}
& 2^{0}=1 \\
& 13^{0}=1 \\
& 199^{0}=1 \\
& (-6)^{0}=1
\end{aligned}
$$

$=\frac{1}{2^{4}}$
Why???

Zero Exponent LAW

A power with an interger base, not including 0 , and an exponent of 0 is equal to 1

Writing Numbers Using Powers of Ten

A place value chart may help

Write 96713 as a power of 10

Ten Thousands	Thousands	Hundreds	Tens	Ones

Erase to see solutions

$$
\begin{aligned}
& 96713= \\
& =(9 \times 1(
\end{aligned}
$$

$$
=
$$

这寺

Write in powers of ten:

$$
\begin{aligned}
\left(3 \times 10^{5}\right) & +\left(7 \times 10^{4}\right)+\left(8 \times 10^{3}\right) \\
+\left(4 \times 10^{2}\right) & +\left(2 \times 10^{1}\right) \\
+ & +\left(5 \times 10^{0}\right)
\end{aligned}
$$

$$
\left(5 \times 10^{2}\right)+\left(8 \times 10^{7}\right)+\left(3 \times 10^{5}\right)+\left(1 \times 10^{0}\right)
$$

Law of exponents
(1) $x^{0}=1$
(a) $\left(x^{2}\right)\left(x^{3}\right)=x^{5}$
(3) $\frac{x^{7}}{x^{4}}=x^{3}$
(4) $\left(x^{4}\right)^{5}=x^{20}$

(6) $\left(\frac{x^{3}}{y^{5}}\right)^{2}=\frac{x^{6}}{y^{10}}$

Try this

Evaluate each expression

a) 5^{0}
b) $-(5)^{0}$
c) $(-5)^{0}$
d) -5^{0}
$1-1$
1
-1

$$
\begin{aligned}
& \text { П BEDMAS } \\
& {\left[3+(-3)^{2}-5(3-7)^{2}\right]+1} \\
& {\left[3+(-3)^{2}-5(-4)^{2}\right]+1} \\
& {\left[\begin{array}{cc}
3+9-5(16)]+1 \\
{[3+9-80]+1} \\
{[12-80]} & +1 \\
-68+1 \\
-67
\end{array}\right.}
\end{aligned}
$$

$$
\begin{gathered}
\text { BEDMAS } \\
-5^{2}+\left(4+(-2)^{2}-3\right)^{3}
\end{gathered}
$$

Without your calculators evaluate the following expressions:
${ }^{1)} 3^{2}\left(5^{0}+2+2^{2}\right)$ $2\left(5+4^{2}\right)$
2) $4^{2}\left(3^{4} \div 2^{0}\right)$
$\overline{2^{4}\left(3^{4}-2^{0}\right)}$

$$
\text { 3) } \frac{2^{4}\left(4^{3} \div 2^{2}\right)-4^{0}}{3\left(3^{4}+2^{2}\right)}
$$

Get those brain muscles pumping!!!

Without your calculators evaluate the following expressions:

$$
\text { 1) } \frac{3^{2}\left(5^{0}+2+2^{2}\right)}{2\left(5+4^{2}\right)}
$$

Get those brain muscles pumping!!!

Without your calculators evaluate the following expressions:

$$
\text { 2) } \frac{4^{2}\left(3^{4} \div 2^{0}\right)}{2^{4}\left(3^{4}-2^{0}\right)}
$$

Get those brain muscles pumping!!!

Without your calculators evaluate the following expressions:

$$
\text { 3) } \frac{2^{4}\left(4^{3} \div 2^{2}\right)-4^{0}}{3\left(3^{4}+2^{2}\right)}
$$

\# 1(a, c, d)
\# 3(a, c)
\#7(a)
\#8(a, c, e)
\#9(a, b, c)

\#12 (a, b)
\#13 (b, d)
\#14 (a, b, c, d)
\#17
\# 18
\&
Work Sheet: All Questions

Extended Laws of Exponents

\qquad
Simplify. Your answer should contain only positive expon en ts.

1) $4 a^{2} \cdot 5 a^{4}$
2) $3 b \cdot 8 b^{3}$
3) $7 x^{3} \cdot x^{2}$
4) $5 x^{5} \cdot 8 x^{3}$
5) $\frac{6 a^{4}}{3 a^{3}}$
6) $\frac{5 n^{20}}{8 n^{4}}$
7) $\frac{12 n^{4}}{8 n}$
8) $\frac{7 r}{6 r}$
9) $(8 n)^{4}$
10) $(7 k)^{3}$
11) $(6 k)^{2}$
12) $\left(5 x^{2}\right)^{4}$
13) $4 b^{8} \cdot 2 b^{3}$
14) $4 m \cdot 3 m$
15) $6 x^{3} \cdot 3 x^{3}$
16) $7 v \cdot 8 v^{2}$
17) $\frac{6 n^{3}}{2 n^{3}}$
18) $\frac{12 x^{21}}{2 x^{13}}$
19) $\frac{15 x^{13}}{3 x^{4}}$
20) $\frac{40 b^{44}}{4 b^{-21}}$
21) $\left(2 m^{2}\right)^{4}$
22) $\left(8 n^{4}\right)^{4}$
23) $\frac{8 r^{3} 12 r^{3}}{(2 r)^{-4}}$
24) $\frac{8 x^{12} \cdot 3 x^{4}}{\left(2 x^{4}\right)^{3}}$
25) $\frac{\left(3 n^{3}\right)^{3} \cdot n^{3}}{\left(3 n^{2}\right)^{2}}$
26) $\left(\frac{3 p^{3} \cdot p^{2}}{3 p^{3}}\right)^{0}$
27) $\frac{\left(2 n^{3}\right)^{5}}{4 n^{3} \cdot\left(n^{4}\right)^{2}}$
28) $\frac{\left(x^{2}\right)^{5}}{x^{2} x^{2}}$
29) $\left(\frac{3 n^{5}}{3 n^{2} \cdot n}\right)^{4}$
30) $\left(4 x^{2}\right)^{3}$
31) $\left(6 x^{4}\right)^{3}$
32) $\frac{\left(9 v^{8}\right)^{2}}{\left(3 v v^{3}\right)^{3}}$
33) $\frac{\left(3 n^{4}\right)^{3}\left(3 n^{4}\right)^{4}}{(3 n)^{4}}$
34) $\left(\frac{2 v^{2} \cdot 4 v^{5}}{2 v^{2}}\right)^{2}$
35) $\frac{3 a^{7} \cdot 4 a^{2}}{a^{4}}$
$34)^{10 p^{8} \cdot p^{3} \cdot 2 p^{12}}{4 p^{4}}^{4}$
36) $\frac{\left(3 n^{4}\right)^{2}}{3 n^{2} \cdot 3 n^{2}}$
37) $\frac{\left(6 x^{2}\right)\left(2 x^{5}\right)^{4}}{\left(2 x^{3} \cdot x^{4}\right)^{3} \cdot\left(x^{0}\right)}$

Notes on Laws of Exponent

Exponent Law for a Product of Powers

To multiply powers with the same base, add the exponents.

$$
a^{m} x a^{n}=a^{m+n}
$$

must be the same base

The variable " a " is any interger, except 0 .
The variable " m " and " n " are any whole numbers.

Exponent Law for a Quotient of Powers

To divide powers with the same base, subtract the exponents.

must be the same base
The variable "a" is any interger, except 0 .
The variable " m " and " n " are any whole numbers.

Exponent Law for a Power of a Power

To raise a power to a power, multiply the exponents.

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

The variable " a " is any integer, except 0 . The variable " m " and " n " are any whole numbers.

Exponent Law for a Power of a Product

$$
(a b)^{m}=a^{m} b^{m}
$$

The variables "a" and "b" are any integer, except 0 .
The variable " m " is any whole numbers.

Exponent Law for a Power of a Quotient

BUT $\mathrm{b} \neq 0$

The variables " a " and " b " are any integer, except 0 .
The variable " m " is any whole numbers.

Extra Material

Write each expression as a product and then evaluate the following:

1) $3^{2} \times 3^{2}$
2) $2^{2} \times 2^{5}$
Do you notice anything???

3) $(-5)^{2} \times(-5)^{4}$

4) $7^{2} \times 7^{4}$
5) $(-2)^{5} x(-2)^{3}$
6) $4^{5} \times 4$

Do you notice anything???

3)

$$
\frac{(-5)^{7}}{(-5)^{3}}
$$

Remember to always sce BEDMAS when valuating

*implify first (using exponent law I) THEN Evaluate each of the following:

1) $3^{10} \div 3^{6}+3^{2}$
2) $-2^{3}\left(2^{9} \div 2^{7}\right)-2^{1}$

3) $\frac{10^{1003}}{10^{1000}}-1$

October 12, 2012

Express each as a single power and then evaluate

1) $2^{20} \times 2^{3} \div 2^{7}$
2) $-(-5)^{7} x(-5)^{2}$
3) $\frac{8^{121}}{8^{118}}$

Simaluate:
4) $15\left(15^{12} \div 15^{9}\right) \div 5+1$

Write the following number with powers of ten
5) 21045

Write the following number in standard form
6) $\left(7 \times 10^{1}\right)+\left(8 \times 10^{6}\right)+\left(3 \times 10^{0}\right)+\left(7 \times 10^{5}\right)+\left(1 \times 10^{2}\right)$

Master 2.20) Extra Practice 4

Lesson 2.4: Exponent Laws 1

1. Write each product as a single power.
a) $4^{3} \times 4^{2}$
b) $5^{0} \times 5^{0}$
c) $(-2)^{2} \times(-2)^{4}$
d) $-6^{3} \times 6^{1}$
e) $(-7)^{0} \times(-7)^{2}$
f) $(-9)^{6} \times(-9)^{3}$
2. Write each quotient as a single power.
a) $8^{7} \div 8^{5}$
b) $10^{4} \div 10^{0}$
c) $(-1)^{6} \div(-1)^{3}$
d) $\frac{-3^{4}}{3^{4}}$
e) $\frac{(-9)^{10}}{(-9)^{5}}$
f) $\frac{11^{9}}{11^{6}}$
3. Express as a single power.
a) $2^{3} \times 2^{6} \div 2^{9}$
b) $(-5)^{8} \div(-5)^{4} \times(-5)^{3}$
c) $\frac{6^{3} \times 6^{5}}{6^{2} \times 6^{4}}$
4. Simplify, then evaluate.
a) $2^{2}-2^{0} \times 2+2^{3}$
b) $(-2)^{6} \div(-2)^{5}-(-2)^{5} \div(-2)^{3}$
c) $-2^{2}\left(2^{3} \div 2^{1}\right)-2^{3}$
5. Simplify, then evaluate.
a) $4^{3} \div 4^{2}+2^{4} \times 3^{2}$
b) $3^{2}+4^{2} \times 4^{1} \div 2^{3}$
c) $\frac{3^{4}}{3^{3}}+\frac{4^{2} \times 4^{0}}{2^{4}}$
6. Write each relationship as a product of powers or a quotient of powers.
a) One million is 1000 times as great as one thousand.
b) One billion is 1000 times as great as one million.
c) One hundred is one-tenth of one thousand.
d) One is one-millionth of one million.
e) One trillion is 1000 times as great as one thousand million.
7. Identify, then correct any errors in these answers.

Explain how you think the errors occurred.
a) $5^{3} \times 5^{2}=5^{6}$
b) $2^{3} \times 4^{2}=8^{5}$
c) $(-3)^{8} \div(-3)^{4}=(-3)^{4}$
d) $1^{2} \times 1^{4}-1^{3}=1^{3}$
e) $\frac{4^{2} \times 4^{4}}{4^{2} \times 4^{1}}=4^{2}$

Fill in the following chart

Power	As Repeated Multiplication	As a Product of Factors	As a power
$\left(3^{2}\right)^{5}$			
$\left(4^{2}\right)^{3}$			
$\left[(-2)^{4}\right]^{3}$			

Try this

Express the following as a single power

1) $\left(5^{7}\right)^{8}$
2) $\left(10^{2}\right)^{3}$

3) $\left[(-2)^{4}\right]^{3}$

Evaluate

1) $\left(2^{3}\right)^{2}$
2) $\left(5^{2}\right)^{3}$
3) $\left[(-3)^{2}\right]^{4}$

Try this

Write as a power

1) $\left[(-5)^{3}\right]^{7}$
2) $-\left(3^{5}\right)^{4}$
3) $\left(4^{8}\right)^{2}$
4)

$$
\left(\frac{4}{5}\right)^{3}
$$

Let's Investigate

Step 1) Write the above as a repeated multiplication.

Step 2) Look at the numerators can you express that as a single power

Step 3) Look at the denominators can you express that as a single power

What did you discover?

$$
[(-6) \times 4]^{2}
$$

Method 1

Use the exponent law for a power of a product
$[(-6) \times 4]^{2}$
$=$ Erase To see
$=$

You Decide

Try some more (use which ever method you want)
 2) $-(5 \times 2)^{3}$

$(5 \times 2)^{3}+\left(2^{8} \div 2^{5}\right)^{4}$

$$
\left[(-4-(-3))^{2}\right]^{2}-\left(-5^{3}+2\right)^{3}
$$

6. Answer the questions below using the shape to the right:
a) Determine a polynomial for the area of the shape. SHOW ALL WORK (4)

c) Determine the area of the shape when $\mathrm{x}=5 \mathrm{~cm}$. SHOW ALL WORK (2)
