

Write $\frac{4}{5}$ as a decimal.

$$
4 \div 5=0.8
$$

0.6

State two rational numbers between -5.40and -5.50

Write two equivalent fractions!

$$
\frac{-8}{9}=\frac{8}{-9}=-\frac{8}{9}
$$

Rational Numbers

\rightarrow any \# that can
be written as fraction
any number including
\rightarrow decimal that repeats
$0.133 \overline{3}$
\rightarrow any \# that ends
is LARGER
than the denominator.

Improper vs. Mixed Fractions

Improper

Mixed Fraction

7 This is a
3 Improper \ldots
$2 \frac{1}{3}$

Mixed Fraction

$$
-5 \frac{3}{7}
$$

\Rightarrow

$$
\begin{aligned}
& -\frac{5}{4}=-1 \frac{1}{4}^{\circ} \\
& -3 \frac{2}{5}=\frac{-17}{5}
\end{aligned}
$$

Arrange the numbers from least to greatest. Change the numbers to decimals! $-\frac{3}{8}, \frac{5}{9},-\frac{10}{4},-1 \frac{1}{4}, \frac{7}{10}, \frac{8}{3}$

Which rational number is larger??

Adding Fractions

When adding fractions you need a COMMON DENOMINATOR:

$$
\begin{aligned}
\text { 1) } \begin{aligned}
& \frac{-5}{8}+\frac{6}{8} \\
&=\frac{2)}{-8}+\frac{-4}{7} \\
&==\frac{1}{8}
\end{aligned}=\frac{12}{7}
\end{aligned}
$$

Determine the sum of each of the following

1) $\frac{-3}{7}+\left(\frac{-3}{7}\right)=\frac{-6}{7}$
2) a) $2.7+1.8$
b) $-3.7+4.5$
c) $2.7+(-8.7)$
0.8
-6

Find a common denominator:

$$
\begin{aligned}
& \frac{4}{5}+\frac{8}{3} \\
= & \frac{12}{15}+\frac{40}{15} \\
= & \frac{52}{15}
\end{aligned}
$$

What about mixed numbers?
 $$
2 \frac{1}{3}+2 \frac{3}{5}
$$

Step 1: Write each mixed number as an improper fraction.

$$
\frac{7}{3}+\frac{13}{5}
$$

Step 2: Find a common denominator, and then add numerators.

$$
\begin{aligned}
\frac{35}{15}+\frac{39}{15} & =\frac{74}{15} \\
& =4 \frac{14}{15}
\end{aligned}
$$

$$
\begin{gathered}
2 \frac{1}{3}+2 \frac{3}{5} \\
2+2=4 \\
\times 5\left(\begin{array}{l}
\frac{1}{3}+\frac{3}{5} \\
\frac{5}{15}+\frac{9}{15}=\frac{14}{15}
\end{array}\right.
\end{gathered}
$$

Senjitil3 Subtracting Rational Numbers

When subtracting Rational Numbers you must have a ...

By determining the LCM

Lowest Common Multiple
(of the denominators)

$$
3 \frac{1}{5}-2 \frac{7}{10}
$$

STEP 1) Write each mixed number as an inproper fraction

$$
\frac{16}{5}-\frac{27}{10}
$$

STEP 2) Find common denominators and then subtract like before

$$
\begin{aligned}
& \frac{32}{10}-\frac{27}{10} \\
& \frac{5}{10}=\frac{1}{2}
\end{aligned}
$$

$$
3 \frac{1}{5}-2 \frac{7}{10}
$$

Multiplying Rational Numbers

What rules do we use to multiply integers?
Indicate if the answer will be negative or positive. How do you know?

$$
\begin{aligned}
& (-4) \times 3=(-) \\
& (-3) \times(-6)=(+) \\
& 2 \times 8=(+) \\
& (+)(-)=(-)
\end{aligned}
$$

Nhen multiplying integers, we use the following rules:
(a negative \#) x (a positive \#) = (a negative \#)
a negative \# x a negative \# = a positive \#
a positive \# x a positive \# = a positive \#
So, when the signs are opposite, the product is negative
and
when the signs are the same, the product is positive!

Now, let's take a look at Fractions.

What rules do we use to multiply fractions?

Evaluate the following expression.

When multiplying fractions, we use this rule:
Multiply the numerator by the numerator then
Multiply the denominator by the denominator
** Then, of course, REDUCE!! (if possible)

Multiplying Rational Numbers in Fraction Form

Determine the product:

Look for common factors in the numerators and denominators.

The signs are the same, so the product is positive!

First, we simplify:

$$
=\left(\frac{-1}{1}\right)\left(\frac{-3}{4}\right)=\frac{3}{4}
$$

Our rule for multiplying fractions is:
numerator by numerator denominator by denominator

So, our new expression, looks like this:

$$
\frac{1 \times 3}{1 \times 4}=
$$

$\frac{3}{4}=$

Multiplying Rational Numbers in mixed number Form

Determine the product.

$$
\left(2 \frac{2}{3}\right)\left(-1 \frac{3}{4}\right)
$$

The signs are different, so the product is negative!
Write the mixed numbers as improper fractions:

$$
\begin{gathered}
=\left(\frac{8}{3}\right)(-\underline{7}) \\
=\left(\frac{{ }^{2}}{4}\right)\left(-\frac{7}{4} /\right) \\
=\frac{(2)(-7)}{(3)(1)} \\
=\frac{-14}{3} \\
=-4 \frac{2}{3}
\end{gathered}
$$

Dividend Missing
$(\square) \div 4=3$

What \# goes in the blank?

OR

$(\underline{)}=\mathrm{x}$

Think:
Division is the inverse of Multiplication.

Any division statement can be written as an equivalent multiplication.

> To Solve for Missing Dividend take Divisor X Quotient

Now with Rational \#s
You Try
" ()$\div\left(\frac{5}{11}\right)=\frac{3}{7}$
B) $\quad \div 12.6=4.2$

$$
(\square) \frac{2}{5}=\frac{15}{4}
$$

$$
\begin{aligned}
& =\frac{30}{20} \\
& \square=\frac{3}{2}
\end{aligned}
$$

Divisor Missing Decimals

$$
15 \div\left(_\right)=-5
$$

Think:
Quotient is negative thus the BLANK must be what sign? \qquad
What \# goes in the blank?

You Try

1) $-2.5 \div$ \qquad $=5$
2) $1.16 \div-=0.2$

Divisor Missing \&Fractions

$$
\left(\frac{5}{7}\right) \div()=\frac{18}{49}
$$

The Quotient is Positive
Thus the divsor is \qquad

$$
()=\left(\frac{6}{7}\right) \div \frac{18}{49}
$$

Divsor $=$ Dividend \div Quotient

Use the strategy of multilpying by the reciprocal

$$
()=\left(\frac{-6}{7}\right) \times \frac{49}{18}
$$

Simplify

$$
\begin{aligned}
& ()=\left(\frac{5 \cdot 5}{7}\right) \times \frac{499^{7}}{183} \\
& ()=\left(\frac{-7}{3}\right)
\end{aligned}
$$

1) $(-5)-3[18 \div(-3)]^{2}$

$$
-5-3[-6]^{2}
$$

$$
-5-3(36)
$$

$$
-5-108
$$

$$
=-113
$$

$$
\text { 1) } \begin{aligned}
& (-1.3)+0.8 \div(-0.2) \times 5 \\
= & (-1.3)+(-4) \times 5 \\
= & (-1.3)+-20 \\
= & -21.3
\end{aligned}
$$

2) $(-3.6)-1.7 \div[0.6-(-0.8)]^{2}$

$$
=(-3.6)-1.7 \div[1.4]^{2}
$$

$$
=(-3.6)-1.7 \div 1.96
$$

$$
(-3.6)-0.867346938 \text { does not }
$$

$$
=(-3.6)-0.867346938 \quad \text { terminate }
$$

$$
=-4.467346939
$$

1) $\left(-\frac{3}{5}\right)\left(\frac{2}{5}\right)-\left(\frac{7}{30}\right) \div\left[\frac{1}{2}+\left(-\frac{1}{6}\right)\right]$

$$
=\left(-\frac{3}{5}\right)\left(\frac{2}{5}\right)-\left(\frac{7}{30}\right) \div\left[\frac{3}{6}+\left(-\frac{1}{6}\right)\right]
$$

$$
=\left(-\frac{3}{5}\right)\left(\frac{2}{5}\right)-\left(\frac{7}{30}\right) \div\left[\frac{2}{6}\right]
$$

$$
=\left(-\frac{6}{25}\right)-\left(\frac{7}{30}\right) \div\left[\frac{1}{3}\right]
$$

$$
=\left(\frac{-6}{25}\right)-\left(\frac{7}{30}\right) \times \frac{3}{1}
$$

$$
=\frac{-6}{25}-\frac{21}{30}
$$

$$
=\frac{-12}{50}-\frac{35}{50}
$$

$$
=\frac{-47}{50}
$$

=

Remember to switch mixed to improper fractions

Make common denominators inside brackets

Complete Brackets
Multiply
$\frac{-16}{4}$
Divide
$=-4$

$$
\begin{aligned}
&\left(-\frac{1}{2}\right)^{2}-\left(-\frac{2}{3}\right) \div\left[\frac{1}{3}+\left(-\frac{3}{12}\right)\right] \\
&=\left(-\frac{1}{2}\right)^{2}-\left(-\frac{2}{3}\right) \div\left[\frac{1}{12}\right] \\
&=\left(-\frac{1}{4}\right)-\left(-\frac{2}{3}\right) \div\left[\frac{1}{12}\right] \\
&=\left(-\frac{1}{4}\right)-\left(-\frac{2}{3}\right) \times \frac{12}{1} \\
&\left.=\left(-\frac{3}{12}\right)\right] \\
&=\left(-\frac{1}{4}\right)-\left(-\frac{2}{1}\right) \times \frac{124}{1} \\
&=\left(-\frac{1}{4}\right)-\left(-\frac{32}{4}\right) \\
&= \frac{31}{4}
\end{aligned}
$$

-If the question deals with fractions you must work with fractions (no calculator) -As soon as you see a decimal you can use a calculator
\#2 (without calculator)
$\# 3(\mathrm{c}, \mathrm{d})$
$\# 5(\mathrm{a}, \mathrm{c})$
\#7($\mathrm{a}, \mathrm{b}, \mathrm{c})$ (without calculator)
\#10(b,c) (without calculator)
\#14 (b, d)
\#18(ac)
\#19(b,d)
\#21 (without calculator) \#23a,c,d,g

