January Exam Review Unit 1

1. Determine the value of $\sqrt{0.16}$
a. $\quad 0.4$
b. 0.07
c. 0.2
d. 0.04

$$
\sqrt{\frac{16}{100}}=\frac{4}{10}=0.4
$$

2. Calculate the number whose square root is 0.9 .
a. 0.81
b. 0.0081
c. 0.081
d. 0.09

$$
\begin{aligned}
\sqrt{x} & =0.9 \\
(\sqrt{x})^{2} & =\left(\frac{9}{10}\right)^{2} \\
x & =\frac{81}{100} \\
x & =0.81
\end{aligned}
$$

3. Which numbers are perfect squares?
i) 30.25
ii) 32
iii) 28.9
iv) 1.44
a. i and iv
b. ii and iii
c. i and ii
d. i and iii

4. Determine the value of $\sqrt{\frac{72}{98}}$.
a. $\frac{6}{14}$
b. $\frac{6}{7}$
c. $\frac{12}{7}$
d. $\frac{36}{49}$

$$
\sqrt{\frac{72}{98} \div 2}=\sqrt{\frac{36}{49}}=\frac{6}{7}
$$

5. Name the two whole numbers whose squares are closest to 22.5 .
a. 9,25
b. 4,5
c. 4,9
d. 16,25

$$
\begin{array}{ccc}
\sqrt{16} & 22.5 & \sqrt{25} \\
4 & & 5
\end{array}
$$

6. Name the two whole numbers whose squares are closest to $\frac{595}{10}$.
a. 49,64
b. 4,9
c. 16,25
d. 7,8

$$
\frac{595}{10}=59.5
$$

Jan 11-11:40 PM
7. Estimate the value of $\sqrt{0.35}$, to the nearest tenth.
a. 0.5
b. 0.6
c. 0.59
d. 0.9

8. A square has an area of $24.8 \mathrm{~cm}^{2}$.

Determine the side length of the square, to the nearest centimeter.
a. $\quad 4.98 \mathrm{~cm}$
b. 4.9 cm
c. 5.0 cm
d. 5 cm

9. The lengths of the two legs of a right triangle are 6.7 cm and 3.2 cm .

Determine the length of the hypotenuse to 1 decimal place.
a. 55.1 cm
b. 5.9 cm
c. 7.4 cm
d. 3.1 cm

10. This composite object is made using centimetre cubes. Determine its surface area.

a. $24 \mathrm{~cm}^{2}$
b. $20 \mathrm{~cm}^{2}$
c. $15 \mathrm{~cm}^{2}$
d. $18 \mathrm{~cm}^{2}$

4 cubes $\times 6$ faces

$$
\begin{aligned}
& =24 \text { faces }-6 \text { faces } \\
& =\frac{18 \text { faces }}{} \begin{array}{l}
\frac{x 1 \mathrm{~cm}^{2}}{18 \mathrm{~cm}^{2}}
\end{array}
\end{aligned}
$$

11. This composite object is made of a $15-\mathrm{cm}$ cube on top of a $30-\mathrm{cm}$ cube. Determine its surface area.

$$
{ }_{6(15 \times 15)}^{\text {Small }}=1350 \mathrm{~cm}^{2}
$$

$$
\text { Big }_{6}(30 \times 30)=5400 \mathrm{~cm}^{2}
$$

overlap

$$
2(15 \times 15)=450 \mathrm{~cm}^{2}
$$

a. $\quad 6750 \mathrm{~cm}^{2}$
b. $5625 \mathrm{~cm}^{2}$
c. $6300 \mathrm{~cm}^{2}$
d. $6525 \mathrm{~cm}^{2}$

$$
\begin{gathered}
1350+5400-450 \\
=6300 \mathrm{~cm}^{2}
\end{gathered}
$$

12. This object is composed of two identical cubes joined by a right rectangular prism. The edge length of each cube is 6 cm .
The rectangular prism is 9 cm long and has square ends of side length 3 cm . Determine the surface area of the object.

a. $\quad 540 \mathrm{~cm}^{2}$
b. $558 \mathrm{~cm}^{2}$
c. $522 \mathrm{~cm}^{2}$
d. $324 \mathrm{~cm}^{2}$

$12(6 \times 6)+(2(4 \times 3)+2(4 \times 3)+2(3 \times 3))-4(3 \times 3)$

$$
432 \mathrm{~cm}^{2}+126 \mathrm{~cm}^{2}-36 \mathrm{~cm}^{2}
$$

$$
=522 \mathrm{~cm}^{2}
$$

Jan 11-11:44 PM
13. This object is composed of a cylinder of diameter 4 cm and height 14 cm on top of another cylinder of diameter 12 cm and height 4 cm .
Determine the surface area of the object, to the nearest square centimeter.

$$
T_{S A}=376.8+175.84
$$

$552.6 \mathrm{~cm}^{2}$
14. This object is composed of a rectangular prism on top of a cylinder.

The rectangular prism has height 8 cm and square ends of side length 4 cm . The cylinder has diameter 16 cm and height 6 cm .
Determine the surface area of the object, to the nearest square centimeter.

a. $631 \mathrm{~cm}^{2}$
b. $816 \mathrm{~cm}^{2}$
c. $832 \mathrm{~cm}^{2}$
d. $848 \mathrm{~cm}^{2}$
cylinder
$S A=2 \pi(8)^{2}+2 \pi(8)(6)$

$S A=401.92+301.44$ $S_{A}=703.36 \mathrm{~cm}^{2}$
$=160 \mathrm{~cm}^{2}$
$703 \cdot 36+160-32$
$=831.4 \mathrm{~cm}^{2}$
15. Determine the value of $\sqrt{2.89}$.

17. Determine the value of $\sqrt{6 \times 3 \times 18}$.

$$
\begin{aligned}
& \sqrt{18 \times 18} \text { or } \sqrt{18^{2}} \\
& \sqrt{324} \\
& =18=18
\end{aligned}
$$

18. A square garden has an area of $240.25 \mathrm{~m}^{2}$.
a) Determine the length of one side of the garden.
b) Determine the perimeter of the garden.

$$
\text { b) } \begin{aligned}
P & =4(15.5) \quad P=15.5+15.5+15.5+15 \mathrm{~s} \\
& =62 \mathrm{~cm} \quad \text { or } \quad=62 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
\text { side } & =\sqrt{240025} \\
& =15.5 \mathrm{~cm}
\end{aligned}
$$

Jan 11-11:46 PM
19. Determine the value of $\sqrt{0.27}$, to the nearest tenth.

20. Determine the length of the hypotenuse, h.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
c^{2} & =1.7^{2}+3.5^{2} \\
c^{2} & =2.89+12.25 \\
\sqrt{c^{2}} & =\sqrt{18.03} \\
c & =4.2 \mathrm{~cm}
\end{aligned}
$$

21. Determine the length of side s.

$$
\begin{aligned}
& a^{2}=c^{2}-b^{2} \\
& a^{2}=8.8^{2}-5.2^{2} \\
& a^{2}=77.44-27.04
\end{aligned}
$$

b

$$
\begin{aligned}
\sqrt{a^{2}} & =\sqrt{50.4} \\
a & =7.1 \mathrm{~cm}
\end{aligned}
$$

22. This object is composed of a cube on top of a right rectangular prism. Determine the surface area of the object.

10
Cube

6	
A	A

Prism (30, 15,15)

$$
\begin{aligned}
\text { Tsa } & =\text { Cube }+ \text { Prism - overlap } \\
& =600+2250-200 \\
& =2650 \mathrm{~cm}^{2}
\end{aligned}
$$

Prism (8, 2,2)

Tsa $=$ Cylinder + Prism - overlap - overlap
$=1469.52+72-8-8$
$=1525.52 \mathrm{~cm}^{2}$
Jan 11-11:48 PM
25. Determine the value of $\sqrt{6.47+7.36+17.53}$.

$$
\begin{aligned}
& \sqrt{31.36} \\
= & 5.6
\end{aligned}
$$

26. Determine the value of $\sqrt{\frac{\sqrt{81}+\sqrt{49}}{\sqrt{196}-\sqrt{100}}}$.

$$
=2
$$

27. Determine the length of the diagonal AC of rectangle ABCD , to the nearest centimeter.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
C^{2} & =(21.3)^{2}+(14.2)^{2} \\
C^{2} & =453 \mathrm{~d} 69+201.64 \\
\sqrt{c^{2}} & =\sqrt{655.33} \\
C & =25.6 \mathrm{~cm}
\end{aligned}
$$

28. Determine the values of s and h. Show your work.

```
Unit 1 Review for January Exam
Answer Section
mUlTIPLE CHOICE
LOC: 9.N5 TOP: NumberKEY: 
LOC: 9N5 TOP: NumberKEY: 1 Procedural Knowledge ( Easy REF: 1.1 Square Roots of Perfect Squares
LOC: 9.N5 TOP: NumberKEY: ' PTS: Donceptual Understanding REF: 1.1 Square Roots of Perfect Squares
LOC: 9.N5 TOP: NumberKEY: }\mp@subsup{}{}{\mathrm{ Procedural Knowledge m}
```



```
REF: 1.2 Square Rools onNon-Perfect Squares
Loc: 9.
REF: 1.2 Square Roots of NTS:-Perfect Squares Easy LIF: LOC: 9.N6
TOP: NumberKEY: Conceptual Understanding
REF: 1.2 Square Roots of NTS:- 1 Derfect Squares Moderate LOC: 9.N6
TOP: NumberKEY: Procedural Knowledge
REF: 1.2 Square Roots of Non-Perfect Squares Moderate LoC: 9.N6
TOP: NumberKEY: Procedural Knowledge
MEF: 1.2 Square Roots of Non-Perfect Squares Moderate LoC: 9N6
REF: 1.2 Square Roots of Non-Perfect Square
PTS: 1 DIF: Easy
REF:- 1.3 Surface Areas of Objeds Smom Right Rectangular Prism
LOC: 9.SS2 TOP: Shape and Space (3-D Objects and 2-D Shapes)
KEY: Procedural Knowledge
REF: 1.3 Surface Areas of Objects Made from: Might Rectangular Prism
LOC: 9.SS2 TOP: Shape and Space (3-D Objects and 2-D Shapes)
KEY: Procedural Knowledge
REF: 1.4 Surtace Areas of Other Composite Objects LOC
TOP: Shape and Space (3-D Objects and 2-D Shapes) KEY: Procedural Knowledge
PTS: 1 DIF: Easy
REF: 1.4 Surface Areas of Other Composite Objects LOC: }9.\mathrm{ .SS2 
PTS: 1 DIF: Easy
TOP: Shape and Space (3-D Objects and 2-D Shapes) KEY: Procedural Knowledge
```


SHORT ANSWER

ANS:

DIF: Easy TOP: Number

REF: 1.1 Square Roots of Perfect Squares KEY: Procedural Knowledge

PTS: 1
LOC: 9.N5
ANS:

PTS: 1
LOC: 9.N5

DIF: Easy TOP: Number

REF: 1.1 Square Roots of Perfect Squares
KEY: Procedural Knowledge

REF: 1.1 Square Roots of Perfect Squares| KEY: Procedural Knowledge
a) The length of one side of the garden is $\sqrt{240.25} \mathrm{~m}$, or
b) The perimeter of the garden is $4 \times 15.5 \mathrm{~m}$,

PTS: 1 DIF: Moderate REF: 1.1 Square Roots of Perfect Squares
LOC: 9.N5
\wedge
PTS: 1
LOC: 9.N6

TOP: Number KEY: Procedural Knowledge

DIF: Easy TOP: Number

REF: 1.2 Square Roots of Non-Perfect Squares KEY: Procedural Knowledge

PROBLEM

(ANS:
$\sqrt{6.47+7.36+17.53}=\sqrt{31.36}$

PTS: 1	DIF: Moderate	REF: 1.1 Square Roots of Perfect Squares
LOC: 9.N5	TOP: Number	KEY: Problem-Solving Skills
S:		
$\frac{\sqrt{81}+\sqrt{49}}{\sqrt{196}-\sqrt{100}}$	$\sqrt{\frac{9+7}{14-10}}$	
	$\sqrt{\frac{16}{4}}$	

Jan 12-12:28 AM

ANS:
Use the Pythagorean Theorem.
$s^{2}+3.5^{2}=6.7^{2}$
$s^{2}=6.7^{2}-3.5^{2}$
$s^{2}=32.64$
$s=\sqrt{32.64}$
$h^{2}=s^{2}+4.4^{2}$
$=32.64+19.36$
$=52$
$h=\sqrt{52}$
Side s is about 5.7 cm and side h is about 7.2 cm .
PTS: 1 DIF: Difficult REF: 1.2 Square Roots of Non-Perfect Squares
LOC: 9.N6 TOP: Number KEY: Problem-Solving Skills |Communication

