\qquad
Date: \qquad

Review for Grade 9 Math Exam - Unit 8 - Circle Geometry

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. O is the centre of this circle and point T is a point of tangency.

Determine the value of x°.

a) 90°
b) 139°
c) 49°
d) 41°
\qquad 2. O is the centre of this circle and point G is a point of tangency.

Determine the value of a. If necessary, give your answer to the nearest tenth.

a) 24.5
b) 49
c) 17.3
d) 35.6
\qquad 3. O is the centre of this circle and point A is a point of tangency.

Determine the value of m. If necessary, give your answer to the nearest tenth.

a) 28
b) 8.1
c) 41.7
d) 48.1
4. O is the centre of the circle.

Determine the value of v°.

a) 26°
b) 52°
c) 64°
d) 38°
\qquad 5. O is the centre of the circle.

Determine the value of a°.
a) 49°
b) 20.5°
c) 41°
d) 69.5°

6. O is the centre of the circle.

Determine the value of n to the nearest tenth, if necessary.

a) 16
b) 4
c) 2
d) 5.8
\qquad 7. O is the centre of the circle.

Determine the value of z to the nearest tenth, if necessary.

a. 4.5
b. 3.6
c. 5
d. 1
\qquad 8. O is the centre of this circle.

Identify all the inscribed angles subtended by the minor arc QS.

a. $\angle \mathrm{QOS}$
c.
$\angle \mathrm{QPS}$ and $\angle \mathrm{QTS}$
b. $\quad \angle \mathrm{PQT}$ and $\angle \mathrm{PST}$
d.
$\angle \mathrm{QPS}$
9. O is the centre of this eircle. Determine the value of m°
a. 30°

180°
b. 90°
d. 60°
10. O is the centre of this circle.

Determine the value of c°.

a. 180°
b. 94°
c. 90°
d. 47°
11. O is the centre of this circle.

Determine the value of z°.

a. 55°
b. 110°
c. 90°
d. 70°
12. O is the centre of this circle.

Determine the value of g°.

a. 90°
b. 58°
c. 64°
d. 116°

Short Answer

13. O is the centre of this circle. Which line is a tangent?

14. O is the centre of this circle. Point T is a point of tangency.
What is the value of e° ?

15. Is the line that passes through points U and V a tangent to the circle?

16. O is the centre of this circle and point B is a point of tangency.

Determine the values of v° and w°.

17. O is the centre of this circle and point S is a point of tangency.

Determine the values of m and n°. If necessary, give your answers to the nearest tenth.

18. O is the centre of this circle.

Which line segment is a diameter?

19. Point O is the centre of this circle. Without solving for s, sketch and label the lengths of any extra line segments you need to draw to determine the value of s.

20. Label the major arc CD and the minor arc CD of this circle.

21) O is the centre of this circle. Is $\angle \mathrm{ACB}$ a central angle or an inscribed angle?

22. O is the centre of this circle.

In this circle, identify the inscribed angle and the central angle subtended by the same minor arc.

23. Point O is the centre of the circle.

Arc $A B$ is a semicircle.
What is the measure of $\angle \mathrm{AOB}$?

24. O is the centre of this circle.

Determine the values of y° and z°.

25. Point O is the centre of the circle.

Determine the values of y° and z°.

Problem

26. A Ruppell's Griffon Vulture holds the record for the bird with the highest documented flight altitude. It was spotted at a height of about 11 km above the Earth's surface. The radius of Earth is approximately 6400 km . How far was the vulture from the horizon, H? Calculate this distance to the nearest kilometre.

27. A circular mirror with radius 28 cm hangs from a hook.

The wire is 48 cm long and is a tangent to the circle at points A and B .
How far, to the nearest tenth, above the top of the mirror is the hook?

28. Draw a point at the centre of this circle. Label the point O . How do you know your answer is correct?

29. a) In a circle, can a chord be longer than a diameter of the circle? Explain.
b) In a circle, can a chord be shorter than a radius of the circle? Explain.
30. A circle has diameter 38 cm . How far from the centre of the circle, to the nearest centimetre, is a chord 26 cm long?
32. Point O is the centre of the circle. Determine the values of x°, y°, and z°.

Review for Grade 9 Math Exam - Unit 8 - Circle Geometry

Answer Section

MULTIPLE CHOICE

1. ANS: D PTS: 1 DIF: Easy

REF: 8.1 Properties of Tangents to a Circle LOC: 9.SS1
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
2. ANS: D PTS: 1 DIF: Easy

REF: 8.1 Properties of Tangents to a Circle LOC: 9.SS1
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
3. ANS: C PTS: 1 DIF: Moderate

REF: 8.1 Properties of Tangents to a Circle LOC: 9.SS1
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
4. ANS: B PTS: 1 DIF: Easy REF: 8.2 Properties of Chords in a Circle

LOC: 9.SS1 TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
5. ANS: C

LOC: 9.SS1
6. ANS: B

LOC: 9.SS1
7. ANS: A

LOC: 9.SS1
8. ANS: C

LOC: 9.SS1
9. ANS: A

LOC: 9.SS1
10. ANS: D

LOC: 9.SS1
11. ANS: D

LOC: 9.SS1
12. ANS: D

LOC: 9.SS1
PTS: 1 DIF: Easy REF: 8.2 Properties of Chords in a Circle
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
PTS: 1 DIF: Easy REF: 8.2 Properties of Chords in a Circle
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
PTS: 1 DIF: Easy REF: 8.2 Properties of Chords in a Circle
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
PTS: 1 DIF: Easy REF: 8.3 Properties of Angles in a Circle
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
PTS: 1 DIF: Easy REF: 8.3 Properties of Angles in a Circle
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
PTS: 1 DIF: Moderate REF: 8.3 Properties of Angles in a Circle
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
PTS: 1 DIF: Moderate REF: 8.3 Properties of Angles in a Circle
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
PTS: 1 DIF: Moderate REF: 8.3 Properties of Angles in a Circle
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding

SHORT ANSWER

13. ANS:

AC
PTS: 1
LOC: 9.SS1
14. ANS:
90°
PTS: 1
LOC: 9.SS1
DIF: Easy REF: 8.1 Properties of Tangents to a Circle
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding

DIF: Easy REF: 8.1 Properties of Tangents to a Circle
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
15. ANS:

Yes.

PTS: 1 DIF: Moderate REF: 8.1 Properties of Tangents to a Circle LOC: 9.SS1 TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
16. ANS:
$v^{\circ}=58^{\circ}, w^{\circ}=30^{\circ}$
PTS: 1 DIF: Moderate REF: 8.1 Properties of Tangents to a Circle
LOC: 9.SS1 TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
17. ANS:
$m=63.4, n^{\circ}=60^{\circ}$
PTS: 1
DIF: Moderate REF: 8.1 Properties of Tangents to a Circle
LOC: 9.SS1
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
18. ANS:

DE
PTS: 1
DIF: Easy
REF: 8.2 Properties of Chords in a Circle
LOC: 9.SS1
TOP: Shape and Space (Measurement)
KEY: Conceptual Understanding
19. ANS:

Answers may vary. For example:

PTS: 1
DIF: Easy
REF: 8.2 Properties of Chords in a Circle
LOC: 9.SS1
TOP: Shape and Space (Measurement)
KEY: Conceptual Understanding
20. ANS:

PTS: 1 DIF: Easy REF: 8.3 Properties of Angles in a Circle
LOC: 9.SS1 TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
21. ANS:

Inscribed angle

PTS: 1 DIF: Easy REF: 8.3 Properties of Angles in a Circle
LOC: 9.SS1 TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
22. ANS:

Inscribed angle: $\angle \mathrm{PRQ}$
Central angle: $\angle \mathrm{POQ}$

PTS: 1 DIF: Easy REF: 8.3 Properties of Angles in a Circle
LOC: 9.SS1 TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
23. ANS:
180°

PTS: 1
LOC: 9.SS1
DIF: Easy REF: 8.3 Properties of Angles in a Circle
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
24. ANS:
$y^{\circ}=68^{\circ}, z^{\circ}=136^{\circ}$
PTS: 1 DIF: Easy REF: 8.3 Properties of Angles in a Circle
LOC: 9.SS1 TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
25. ANS:
$y^{\circ}=38^{\circ}, z^{\circ}=52^{\circ}$
PTS: 1 DIF: Moderate REF: 8.3 Properties of Angles in a Circle
LOC: 9.SS1 TOP: Shape and Space (Measurement) KEY: Conceptual Understanding

PROBLEM

26. ANS:
$\begin{aligned} \mathrm{OV} & =11 \mathrm{~km}+6400 \mathrm{~km} \\ & =6411 \mathrm{~km} \\ \mathrm{OH} & =6400 \mathrm{~km}\end{aligned}$
Use the Pythagorean Theorem in $\triangle \mathrm{OHV}$ to solve for HV.
$\mathrm{HV}^{2}=\mathrm{OV}^{2}-\mathrm{OH}^{2}$
$H V^{2}=6411^{2}-6400^{2}$

$H V^{2}=140921$
$H V=\sqrt{140921}$
HV $\doteq 375.3944 \ldots$
The vulture was about 375 kilometres from the horizon.
PTS: 1 DIF: Moderate REF: 8.1 Properties of Tangents to a Circle
LOC: 9.SS1 TOP: Shape and Space (Measurement) KEY: Problem-Solving Skills
27. ANS:

The distance from the centre of the mirror to the hook is: OT
So, the distance from the top of the mirror to the hook is: OT -28 cm
Solve for OT.
$\mathrm{OT}^{2}=28^{2}+24^{2}$
$O T^{2}=1360$
$\mathrm{OT}=\sqrt{1360}$
$\mathrm{OT} \doteq 36.8781 \ldots$
So,
OT - 28 cm
$=36.8781 \ldots \mathrm{~cm}-28 \mathrm{~cm}$
$=8.8781 \ldots \mathrm{~cm}$
So, the hook is about 8.9 cm above the mirror.
PTS: 1 DIF: Moderate REF: 8.1 Properties of Tangents to a Circle
LOC: 9.SS1
TOP: Shape and Space (Measurement) KEY: Problem-Solving Skills
28. ANS:

I know that the centre of the circle lies along the perpendicular bisector of a chord. So, when two different perpendicular bisectors are drawn, the centre of the circle is the point where they intersect.

PTS: 1 DIF: Easy REF: 8.2 Properties of Chords in a Circle
LOC: 9.SS1 TOP: Shape and Space (Measurement)
KEY: Problem-Solving Skills | Communication
29. ANS:
a) No. A chord joins two points on a circle. Given one point on a circle, the point farthest from that point is on the opposite side of the circle. The line connecting these two points passes through the centre of the circle, so it is a diameter.
b) Yes. For example, in this circle, chord AB is shorter than radius OC .

PTS: 1 DIF: Moderate REF: 8.2 Properties of Chords in a Circle
LOC: 9.SS1 TOP: Shape and Space (Measurement)
KEY: Problem-Solving Skills | Communication
30. ANS:

Draw two chords.
Construct the perpendicular bisectors of the chords.
The intersection of the perpendicular bisectors is the centre of the circle.
PTS: 1 DIF: Moderate REF: 8.2 Properties of Chords in a Circle
LOC: 9.SS1 TOP: Shape and Space (Measurement)
KEY: Problem-Solving Skills | Communication
31. ANS:

Sketch a diagram.
Let d represent the distance from the chord to the centre of the circle.

Draw a radius from the centre to one end of the chord.

Label the known lengths.

PR is a chord of the circle, and OQ is perpendicular to the chord, passing through the centre of the circle, so $\mathrm{PQ}=\mathrm{QR}$ and QR is $\frac{1}{2}$ of PR :
$\mathrm{QR}=\frac{1}{2}(26 \mathrm{~cm})$

$$
=13 \mathrm{~cm}
$$

ST is a diameter of the circle, and OR is a radius of the circle, so OR is $\frac{1}{2}$ of ST:
$\mathrm{ST}=\frac{1}{2}(38 \mathrm{~cm})$
$=19 \mathrm{~cm}$
Use the Pythagorean Theorem in $\triangle O Q R$.

$$
\begin{aligned}
d^{2}+13^{2} & =19^{2} \\
d^{2} & =19^{2}-13^{2} \\
d^{2} & =192 \\
d & =\sqrt{192} \\
d & =13.8564 \ldots
\end{aligned}
$$

So, the chord is approximately 14 cm from the centre of the circle.

PTS: 1 DIF: Moderate REF: 8.2 Properties of Chords in a Circle
LOC: 9.SS1 TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
32. ANS:

The sum of the central angles in a circle is 360°.
$133^{\circ}+107^{\circ}+x^{\circ}=360^{\circ}$

$$
\begin{aligned}
240^{\circ}+x^{\circ} & =360^{\circ} \\
x^{\circ} & =360^{\circ}-240^{\circ} \\
x^{\circ} & =120^{\circ}
\end{aligned}
$$

$\angle \mathrm{ACB}$ is an inscribed angle and $\angle \mathrm{AOB}$ is a central angle subtended by the same arc.
So, $\angle \mathrm{ACB}=\frac{1}{2} \angle \mathrm{AOB}$

$$
\begin{aligned}
& y^{\rho}=\frac{1}{2} \times 120^{\circ} \\
& y^{\rho}=60^{\circ}
\end{aligned}
$$

OA and OB are radii, so $\triangle \mathrm{AOB}$ is isosceles with
 $\angle \mathrm{OAB}=\angle \mathrm{OBA}=z^{\circ}$.
The sum of the angles in a triangle is 180°, so in $\triangle \mathrm{AOB}$:

$$
\begin{aligned}
z^{\circ}+z^{\circ}+120^{\circ} & =180^{\circ} \\
2 z^{\circ}+120^{\circ} & =180^{\circ} \\
2 z^{\circ} & =180^{\circ}-120^{\circ} \\
2 z^{\circ} & =60^{\circ} \\
z^{\circ} & =\frac{60^{\circ}}{2} \\
z^{\circ} & =30^{\circ}
\end{aligned}
$$

PTS: 1
DIF: Difficult REF: 8.3 Properties of Angles in a Circle
LOC: 9.SS1 TOP: Shape and Space (Measurement) KEY: Problem-Solving Skills

