Curriculum Outcomes:

(SS1) Solve problems and justify the solution strategy using circle properties, including: the perpendicular from the centre of a circle to a chord bisects the chord; the measure of the central angle is equal to twice the measure of the inscribed angle subtended by the same arc; the inscribed angles subtended by the same arc are congruent; a tangent to a circle is perpendicular to the radius at the point of tangency.

Student Friendly:

How angles found at the centre of a circle are related to angles formed by two chords found inside the circle.

If AB is 16 cm, calculate the length of OT and the <OYF.

If AB is 16 cm, calculate the length of OT and the <OYF.

$$<$$
OFY = 90° (Tang P)

$$g^{\circ}$$
=

$$g^{\circ}$$
=

If AB is 16 cm, calculate the length of OT and the <OYF.

AT= BT = 8 cm (given/Chord)

<OTB =<OTA = 90 $^{\circ}$ (Chord P)

OF = 6cm (radius)

OA = 6cm (radius)

OB = 6cm (radius)

$$a^2 = c^2 - b^2$$

$$a^2=10^2-8^2$$

$$a^2 = 100 - 64$$

$$a^2 = 36$$

$$a = 6$$

- The longer arc AB is the major arc.
- The shorter arc AB is the minor arc.

Central Angle:

The angle formed by joining the endpoints of a arc to the centre of a circle (Made with 2 radii)

< AOB

Inscribed Angle:

The angle formed by joining the endpoints of a arc to a point on the circle (Made with two chords)

< ACB

Inscribed and central angles are **SUBTENDED** by the MINOR arc

come from the same 'smaller arc'

Gentral Angle & Inscribed Angle Property

Property 1: (Ins/Cent <,

In a circle, the measure of a central angle coming from an arc is TWICE the measure of an inscribe angle coming from the same arc.

Central angle is twice the inscribed

$$<$$
PRQ = $\frac{1}{2}$ $<$ POQ

Inscribed angle is half the center angle

Example:

<QOP=60°(given/central)

<QPR = 30° (inc/cent<, QP)

<ACB=28°(given/inc)

<AOB = 56° (inc/cent<, AB)

Inscribed Angle Property

Property 2: (Ins<, ___)

In a circle, all inscribed angles coming from the same arc are equal.

Example:

$$<$$
ABC = 50° (given/ ins)

$$<$$
ADC = 50° (ins $>$, \overrightarrow{AC})

 $<BCD = 40^{\circ} (given/ins)$

$$, BD)$$

Angles is a Semicircle Property

Property 3: (Inc <, diam)

All inscribed angles subtended by a semicircle (diameter)are right angles

Makes sense

Inscribed angles are always half the centre

Center Angle = 180° (Straight Line)

Inscribed angle is half the Central Angle

Cyclic Quadrilateral Angle Properties:

Property 4:(Cy Quad)

__The opposite angles of an inscribed **quadrilateral** are supplementary.

(add up to 180°)

$$< A + < C = 180$$

$$< B + < D = 180^{\circ}$$

$$<$$
C = 50° (Cy Quad)

$$<$$
B = 110 $^{\circ}$ (Cy Quad)

Ever thing you have learned

Angle Properties	Tangent & Chord Properties	Circle Properties
(SATT)	< = 90° (Tang P)	<=° (ins/cent >,)
(ITT)	= 90 (Tailg T)	_
(SAT)	<= <= 90° (Chord P)	<=° (ins >,)
(CAT)		<=° (ins >, diam)
(OAT)	=(Chord P)	- ° (CyOuad)
(CyAT)	= = (Radii)	<=° (CyQuad)
(EAT)	·	

 $_{X^{\circ}}$ < DOC = 72° (inc/Cent, \overrightarrow{DC})

<DOE=64°(given/cent)

$$x^{\circ}$$
 < DBE = 32° (inc/Cent, ED)

$$y^{\circ}$$
, dia)

Example:

<ADC=101° (CyQuad)

Example 1 Using Inscribe and Central Angles

Point O is the center of a circle. Determine the values of \Re and \Re .

<BWG = $\underline{24}^{\circ}$ (given/ ins)

k <BOG= 48° (Inc/Cent, BG)

t <BRG=24°(Inc<, BG)

Example 2

Applying the Property of an Angle Inscribed in a Semicircle

Point O is the center of the circle. Determine the value of x° , y° and z°

$$<$$
ACB = 32° (given/ ins)

$$X < AOB = 64^{\circ} (Inc/Cent <, AB)$$

$$z < CAB = 90^{\circ} (Inc <, Dia)$$

$$y < ABC = \underline{58}^{\circ} (SATT)$$

Example 3

Determining Angles in an Inscribed Triangle

Determining the values of x $^{\circ}$, y $^{\circ}$, z $^{\circ}$, m $^{\circ}$, n $^{\circ}$

Hint: LOOK AT CENTER ANGLES and Complete the circle for x

$$x < POE = 100^{\circ} (CyAT)$$

$$Y < PEO = 40^{\circ}$$
 (ITT)

$$Z < EPO = 40^{\circ} (ITT)$$

$$m < OTE = 43^{\circ} (ITT)$$

$$n < OTP = 7^{\circ}$$
 (ITT)

Tangent & Chord Properties	Circle Properties
- 00° (Tang D)	<=° (ins/cent >,)
90 (Tang P)	
< = < = 90° (Chord P)	<=° (ins >,
	< = ° (ins >, diam)
=(Chord P)	
= = (Radii)	<=° (CyQuad)
	< = 90° (Tang P) < = < = 90° (Chord P)

Examples

$$z = 35^{\circ} (SATT)$$
 (cylic quad)

-click on the "Homework" link on my teachers page for optional review questions

- If you have any questions you can contact me on the

Remind app

or

through email:

melanie.burns@nbed.nb.ca

Worksheet - Angles in a Circle.doc