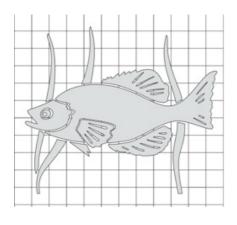
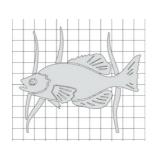
Curriculum Outcomes:

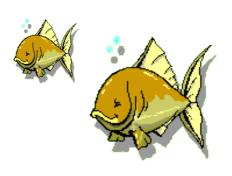
(SS3) Demonstrate an understanding of similarity of polygons.

(SS4) Draw and interpret scale diagrams of 2-D shapes.

(SS5) Demonstrate an understanding of line and rotation symmetry.


Student Friendly:


How are diagrams related in size?


To determine how to enlarge or reduce diagram dimensions

Chapter 7: Similarity and Transformations

Section 7.1 Enlargement & Section 7.2 Reductions

Scale Diagrams:

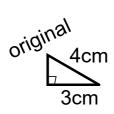
A diagram that is an enlargement or reduction of another diagram.

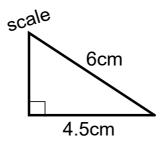
Enlargement: Make bigger

Reduction: Make smaller

The measurements in each diagram are compared.

Scale Factor = <u>Length of Scale Diagram</u> <u>Length of Original Diagram</u>

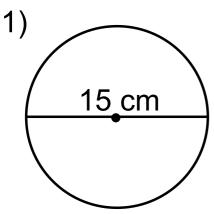

The scale factor can be written as a fraction or decimal.

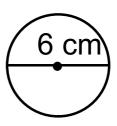

If the scale factor is less than one, the diagram is a reduction,

If the scale factor is larger than one the diagram is an enlargement.

When pairs of corresponding lengths have the same scale factor, we say that the

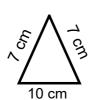
corresponding lengths are proportional.

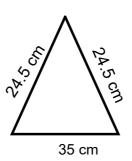

Hypotenuse

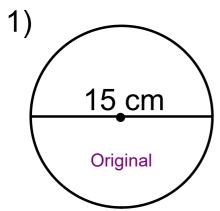

Scale factor =
$$\frac{\text{scale}}{\text{original}} = \frac{6}{4}$$

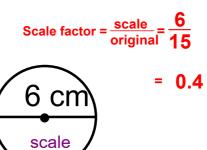
Scale factor =
$$\frac{\text{scale}}{\text{original}} = \frac{4.5}{3}$$

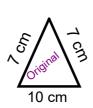
= 1.5

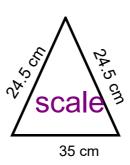

Try on your own


Calculate the scale factor of the following

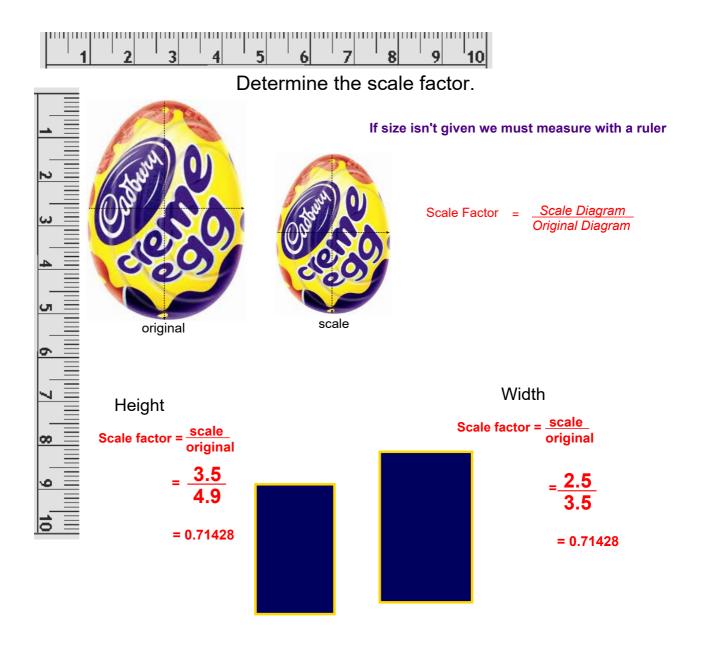



2)

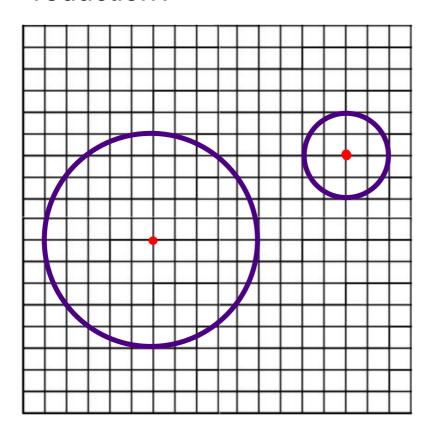



Calculate the scale factor of the following

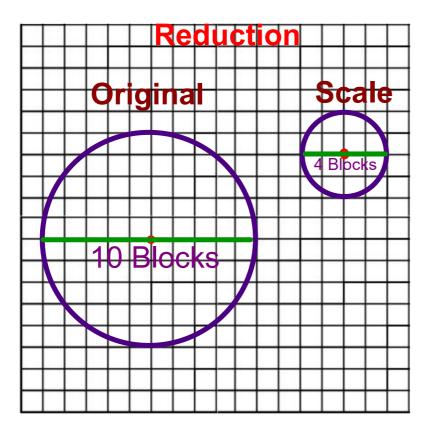
2)


Pick corresponding sides from each triangle to compare

Scale factor =
$$\frac{\text{scale}}{\text{original}}$$

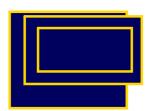

$$= \frac{24.5}{7}$$

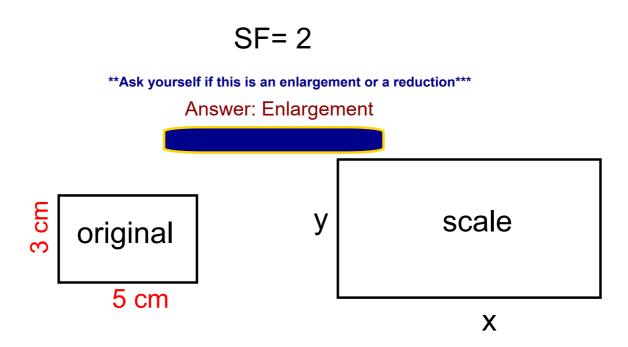
$$= 3.5$$


Scale factor =
$$\frac{\text{scale}}{\text{original}}$$

= $\frac{35}{10}$
= 3.5

What is the scale factor of this reduction?




What is the scale factor of this reduction?

$$SF = \frac{4}{10}$$

$$SF = 0.4$$

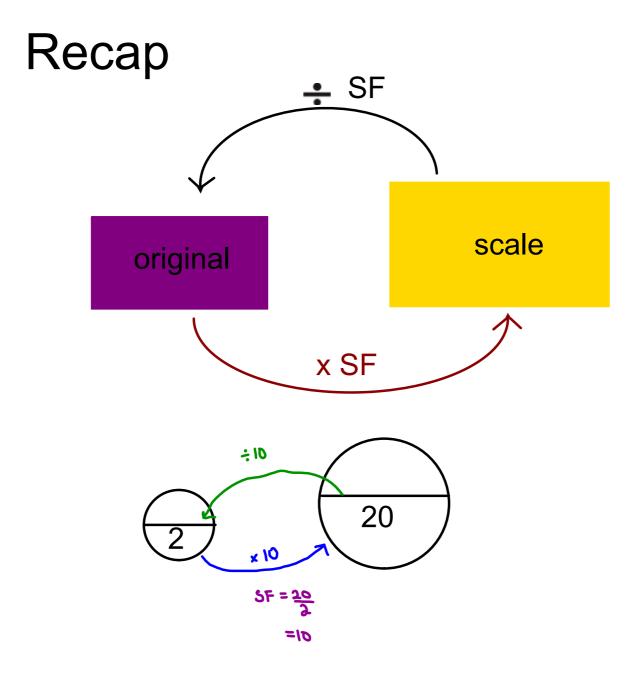
When going from original to scale (Original) x (Scale Factor)

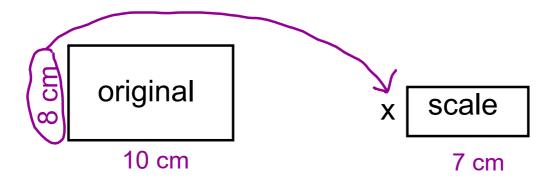
```
x = (original) \times (Scale Factor)y = (original) \times (Scale Factor)x = 5 \text{ cm } \times 2y = 3 \text{ cm } \times 2x = 10 \text{ cm}y = 6 \text{ cm}
```

SF=
$$\frac{3}{4}$$
 = 0.75

Ask yourself if this is an enlargement or a reduction*

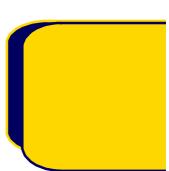
Answer: Reduction


y scale

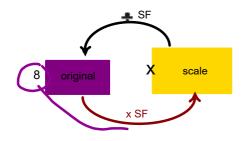

12 cm

X

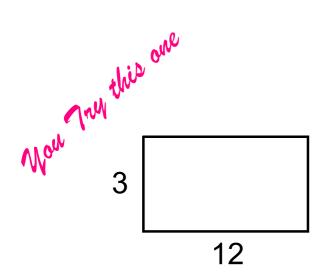
When going from original to scale (Original) x (Scale Factor)

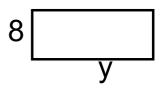

$$x = (original) \times (Scale Factor)$$

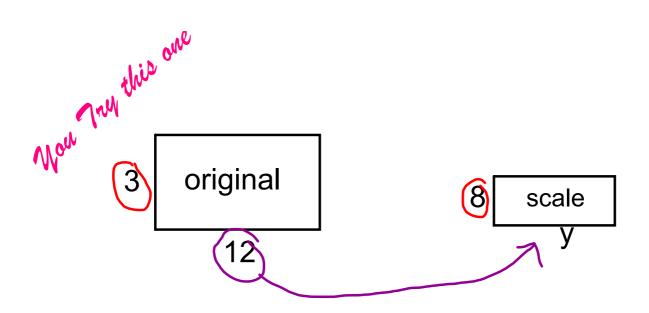
 $x = 12 \text{ cm } \times \frac{3}{4}$
 $y = (original) \times (Scale Factor)$
 $y = 8 \text{ cm } \times \frac{3}{4}$
 $x = 9 \text{ cm}$
 $y = 6 \text{ cm}$


Step 1: Determine the scale factor

$$\begin{array}{ccc}
SF = \underline{Scale} & = \underline{7 \text{ cm}} & = 0.7 \\
Original & 10 \text{ cm}
\end{array}$$

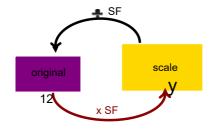



Step 2: Determine if you are going from

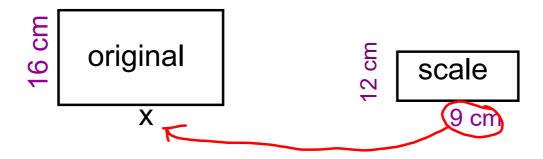

original to scale or scale to original

$$x = (original) x (SF)$$

 $x = 8 cm x (0.7)$
 $x = 5.6 cm$



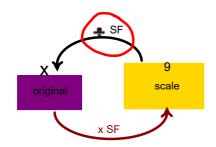
Step 1: Determine the scale factor


$$SF = \frac{Scale}{Original} = \frac{8 \text{ cm}}{3 \text{ cm}} = \frac{8}{3}$$

Step 2: Determine if you are going from

original to scale or scale to original

y = (original) x (SF)
y = 12 cm x (8)
(3)
y =
$$\frac{96}{3}$$
 cm
y = 32 cm



Step 1: Determine the scale factor

$$SF = \frac{Scale}{Original} = \frac{12 \text{ cm}}{16 \text{ cm}} = 0.75$$

Step 2: Determine if you are going from

original to scale or scale to original

$$x = (scale) \div (SF)$$
$$x = 9 cm \div (0.75)$$

x = 12 cm

Sometimes you are only given the scale diagram....

A scale may be given as a ratio.

scale: original

The scale on this scale diagram of a house is 1:150.

This means that 1cm on the diagram represents 150 cm or 1.5m on the house.

In other words... the scale factor is 1

150

How wide is the actual house??

front

 $x = (scale) \div (SF)$

x = 30 cm - (1/150)

x = 4500 cm

x 30

X original scale 30

Second method

scale: original

1 cm: 150 cm

x 30

+30 cm : 4500 cm

Gass Homework

Homework

-click on the "Homework" link on my teachers page for optional review questions

- If you have any questions you can contact me on the

Remind app

or

through email:

melanie.burns@nbed.nb.ca

