Curriculum Outcomes:

(SS3) Demonstrate an understanding of similarity of polygons.

(SS4) Draw and interpret scale diagrams of 2-D shapes.

(SS5) Demonstrate an understanding of line and rotation symmetry.

Student Friendly:

Proving triangles are similar and calculating unknown lengths based on similarities.

1) Determine the scale factor of the following:

2) Determine the unknown lengths for the following, if the scale factor is 1/5

3) Determine the unknown lengths for the following

Diameter		Scale
of original	of Scale	Factor
23 cm		1/4
18 cm	14 cm	
	3.2 cm	5/2

1) Determine the scale factor of the following:

Scale factor =
$$\frac{\text{scale}}{\text{original}} = \frac{4}{12} = \frac{1}{3}$$

= $0.\overline{3}$

2) Determine the unknown lengths for the following, if the scale factor is 1/5

Scale factor =
$$\frac{\text{scale}}{\text{origina}}$$

3) Determine the unknown lengths for the following

	Diameter	Diameter	Scale Factor
	of original	of Scale	
a)	23 cm	5.75	1/4
6)	18 cm	14 cm	14/18 or 7/9
c)	1.28	3.2 cm	5/2

b) Looking for scale factor

Quick Review from Chapter 6

Solve the following Ratios for the unknown

variable:

$$\frac{4}{5} = \frac{x}{12.5}$$

$$\frac{4(12.5)}{5} = x$$

$$10 = x$$

$$\cancel{8}3 = \cancel{9}5\cancel{8}$$

$$3y = 15(8)$$

$$\frac{3y}{3} = \frac{15(8)}{3}$$

$$y = 40$$

Nou Iny

$$\frac{x}{6.5} = \frac{8.5}{13}$$

$$\frac{14}{y} = \frac{22}{5}$$

Nou Try

$$\frac{x}{6.5} = \frac{8.5}{13}$$

$$x = (8.5)(6.5)$$
13

$$x = 4.25$$

$$\frac{\cancel{5}}{\cancel{4}} = \frac{\cancel{2}}{\cancel{2}}$$

$$(14)(5) = (22)(y)$$

$$(14)(5) = (y)$$
(22)

$$3.18 = y$$

THERE ARE 3 WAYS TO PROVE TRIANGLES ARE SIMILAR:

1) TRIANGLES ARE SIMILAR IF:

AAA (ANGLE ANGLE ANGLE)

> ALL THREE PAIRS OF CORRESPONDING ANGLES ARE THE SAME. ...

lf

Original Scale

$$< A = < D$$

$$< B = < E$$

$$<$$
C = $<$ F

△ ABC ~ △ DEF (AAA)

2) TRIANGLES ARE SIMILAR IF:

SSS IN SAME PROPORTION (SIDE SIDE SIDE)

> ALL THREE PAIRS OF CORRESPONDING SIDES ARE IN THE SAME PROPORTION. ...

If the side ratios are the same

Small Medium Large
$$\underline{EF} = \underline{DE} = \underline{DF}$$
BC AB AC

△ ABC ~ △ DEF (SSS)

- 3) TRIANGLES ARE SIMILAR IF:
 - SAS (SIDE ANGLE SIDE)
 - > TWO PAIRS OF SIDES IN THE SAME PROPORTION AND THE INCLUDED ANGLE EQUAL.

If

Side Med Side Large

DE _ EF

AB BC

Angle in between two sides <A = < D

△ ABC ~ △ DEF (SAS)

Once the triangles are similar:

Theorem:

The corresponding sides of similar triangles are in proportion.

If: $\triangle ABC \sim \triangle DEF$ Then: $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$

Small
 Medium
 Large

$$\underline{IT}$$
 =
 \underline{IR}

 AC
 CN
 AN

 $\underline{3}$
 =
 $\underline{4}$
 =
 $\underline{5.2}$

 9
 12
 15.6

 $0.\overline{3}$
 =
 $0.\overline{3}$

 \triangle ITR \sim \triangle ACN (SSS)

Are these triangles similar?

Triangles are just polygons

Prove Similarity

Prove similarity: (AAA)

$$< L = < S$$

$$\triangle$$
 LMN \sim \triangle SRQ (AAA)

$$< M = < R$$

$$< N = < Q$$

Are these triangles similar?

Prove Similarity

12

Large

Prove similarity: (SAS)

CB CA

$$\frac{4.8}{4.8} = \frac{4}{4}$$

12 10

$$0.4 = 0.4$$

△ EFD ~ △ CBA (SAS)

Dealing with overlapping triangles:

Many problems involving similar triangles have one triangle ON TOP OF (overlapping) another triangle. Since \overline{DE} is marked to be parallel to \overline{AC} , we know that we have $<\!BDE$ congruent to $<\!DAC$ (by corresponding angles). $<\!B$ is shared by both triangles, so the two triangles are similar by AA.

There is an additional theorem that can be used when working with overlapping triangles:

Additional If a line is parallel to one side of a triangle and intersects the other two sides of

Theorem: the triangle, the line divides these two sides proportionally.

$$If: \overline{DE} || \overline{AC}$$

Then:
$$\frac{BD}{DA} = \frac{BE}{EC}$$

Find x:

Write the Similarity Statement:

Write the proper ratios:

Fill in the ratios:

Solve:

Find x:

Write the Similarity Statement: <A = <D

Write the proper ratios:

Fill in the ratios:

Solve: Method 1

$$\frac{X}{10} = \frac{12}{6}$$

$$X = \frac{(12)(10)}{6}$$

$$X = 20$$

Method 2

$$SF = \underline{scale} = \frac{12}{6}$$

$$x = 20$$

IF $\triangle \underline{ACB} \sim \underline{\triangle ECD}$, solve for "k"

IF \triangle ACB \sim \triangle ECD , solve for "k"

Method 1

 $\frac{K = 10}{14}$

$$K = (10)(14)$$

$$K = 5.8\overline{3}$$

Method 2

$$SF = \frac{scale}{original} = \frac{24}{10}$$

IF IT STATE SIMILARITY, DON'T PROVE

If \triangle MWY $\sim \triangle$ BZG, determine the value of X

IF IT STATE SIMILARITY, DON'T PROVE

If \triangle MWY $\sim \triangle$ BZG, determine the value of X

Method 1

$$\frac{x}{10} = \frac{6}{25}$$

$$x = \frac{(10)(6)}{25}$$

$$x = 2.4$$

Method 2

$$SF = \frac{\text{scale}}{\text{original}} = \frac{25}{6}$$

$$x = 2.4$$

Try This!!

Solve for x.

Try This !!

Solve for x.

a)

Method 1

$$\frac{\mathsf{ED} = \mathsf{WE}}{\mathsf{HS} \quad \mathsf{WH}}$$

$$\frac{X = 6.25}{16}$$

$$x = \underline{(6.25)(16)}$$

$$x = 5$$

Method 2

$$SF = \frac{\text{scale}}{\text{original}} = \frac{20}{6.25}$$

$$x = 16 \div 3.2$$

A telephone pole that is 62 ft tall cast a shadow that is 40 ft long. Find the height of a fence pole that cast a 4 ft shadow.

Assume the triangles are similar

A telephone pole that is 62 ft tall cast a shadow that is 40 ft long. Find the height of a fence pole that cast a 4 ft shadow.

Assume the triangles are similar

Method 1

$$\frac{x}{62} = \frac{4}{40}$$

$$x = \frac{(62)(4)}{40}$$

$$x = 6.2 \text{ ft}$$

Method 2

$$SF = \underline{scale} = \underline{4}$$
 original $\underline{40}$

-click on the "Homework" link on my teachers page for optional review questions

- If you have any questions you can contact me on the

Remind app

or

through email:

melanie.burns@nbed.nb.ca

