Curriculum Outcomes:

(SS1) Solve problems and justify the solution strategy using circle properties, including: the perpendicular from the centre of a circle to a chord bisects the chord; the measure of the central angle is equal to twice the measure of the inscribed angle subtended by the same arc; the inscribed angles subtended by the same arc are congruent; a tangent to a circle is perpendicular to the radius at the point of tangency.

Student Friendly:

How we can use the tangent properties to solve for unknown lengths. (Tangent properties go hand and hand with Pythagorean theorem)

$$a^{\circ} = 50^{\circ} (SAT)$$

$$b^{\circ}$$
 = 85° (EAT) or SATT

$$e^{\circ} = 65^{\circ} (OAT) \text{ or } (SAT)$$

$$d^{\circ} = 115^{\circ} (SAT)$$

$$f^{\circ} = 115^{\circ} (OAT) \text{ or } (SAT)$$

$$t^{\circ} = 68^{\circ} (CAT)$$

4) 68° x°

$$x^{\circ} = \frac{180^{\circ} - 68^{\circ}}{2}$$

$$x^{\circ} = 56^{\circ} (ITT)$$

$$y^{\circ} = 56^{\circ} (ITT)$$

Review Pythagorean Theorem

Hypotenuse
$$c^2=a^2+b^2$$

1)

$$X \Rightarrow Hyp$$

$$c^2=a^{2+}b^2$$

 $c^2=12^2+9^2$

$$c^2 = 144 + 81$$

$$c^2 = 225$$

$$c = \sqrt{225}$$

 $c = 15 \text{ cm}$

2)

$$a^2 = c^2 - b^2$$

$$a^2=20^2-12^2$$

$$a^2$$
=400 - 144

$$a^2 = 256$$

$$a = 16 cm$$

Review

Sum of Angles in a Triangle Theorem (SATT)

Rule:

Angles in a triangle add up to 180°

$$a^{\circ} + b^{\circ} + c^{\circ} = 180^{\circ}$$

1)

$$a^{\circ} = 180^{\circ} - 90^{\circ} - 60^{\circ}$$

$$a^{\circ} = 30^{\circ} (SATT)$$

2)

$$b^{\circ} = 180^{\circ} - 90^{\circ} - 24^{\circ}$$

$$b^{\circ} = 66^{\circ} (SATT)$$

Isosceles Triangle Theorem (ITT)

-Base angles in an isosceles triangles are equal

$$a^{\circ} = \frac{180^{\circ} - b^{\circ}}{2}$$

Tangent Properties

- tangent a line that touches a circle/curve at only 1 point.
 - the point of contact is called the **point of tangency.**

ex:

A
P
Line AB is a tangent

Center is Denoted by "O"

"P" is the **point of tangency**

Tangent Property 1:

A tangent to a circle is perpendicular to the radius at the point of tangency. $\langle APO = \langle BPO = 90 \rangle$ (Tang P)

"Join O to B and you have formed a right triangle. Thus, you can use the Pythagorean Theorem to find side lengths." (OR Angle sum of triangle to find missing angles)

Wrap Up to Tangents

Only two ways to solve Tangent Problems:

1) Angle sum of a triangle (SATT)

unknown angle= 180° - 90° - given angle

2) Pythagorean Theorem

$$c^2 = a^2 + b^2$$
 Hypotenuse

$$a^2 = c^2 - b^2$$
 Leg

Determining the Measure of an Angle in a Triangle

1) Point O is the centre of a circle and AB is a Tangent to the circle. In \triangle OAB, <AOB = 56° . Determine the measure of <OBA. Point A is the point of tangency.

(Show all Work)

<OAB = 90° (Tang P)

<OBA = 180° - 90° - 56°

<OBA = 34 $^{\circ}$ (SATT)

Using the Pythagorean Theorem in a Circle

2) Point O is the center of a circle and TK is a tangent to the circle. TK is 20 cm and OK = 30 cm. Determine the length of the radius OT. Give the answer to the nearest tenth. Point T is the point of tangency.

SK is a tangent determine the length of KO if given the following: SO is 11cm and KS is 6 cm

Point S is the point of tangency.

SHOW ALL WORK AND COPY THIS DOWN

KO ⇒ Hyp

$$c^2=a^{2+}b^2$$

 $c^2=11^2+6^2$
 $c^2=121+36$
 $c^2=157$
 $c=\sqrt{157}$
 $c=12.5$ cm

Solving Problems Using the Tangent and Radius Property

Point O is the centre of a circle and AB is a tangent to the circle. In $\triangle OAB$, $\angle AOB = 63^{\circ}$ Determine the measure of $\triangle OBA$. Point A is the point of tangency.

<OAB = 90° (Tang P)

<OBA = 180° - 90° - 63°

<OBA = 27 $^{\circ}$ (SATT)

Solving Problems Using the Tangent and Radius Property Presenting...

An airplane, W, is cruising at an altitude of 56km. A cross section of Earth is a circle with radius approximately 64 km. A passenger wonders how far she is from a point H on the horizon she sees outside the window. Calculate this distance to the nearest kilometre.

Must draw OH

<OHW = 90° (Tang P)

OH = OT = 64km (radii)

WH ⇒ Leg

$$a^2 = c^2 - b^2$$

$$a^2 = 120^2 - 64^2$$

$$a^2 = 2696$$

$$a = 2696$$

$$a = 51.9 \text{ km}$$

52km

-click on the "Homework" link on my teachers page for optional review questions

- If you have any questions you can contact me on the

Remind app

or

through email:

melanie.burns@nbed.nb.ca

Section 8.1 Sticky Note Activity.docx