Curriculum Outcome

N1: Demonstrate an understanding of rational numbers by: comparing and ordering rational numbers; solving problems that involve arithmetic operations on rational numbers.

Student Friendly: "Adding fractions and adding decimals."

3.2 Adding Rational Numbers

addition and Integers

To determine if the answer to an addition of integers will be positive or negative:

If the signs are the <u>same</u>: Keep the same sign, and ADD.

Ex. (-4) + (-2) = -6

If the signs are different:

Cover up the signs.

Find the biggest number.

Take the sign of the BIGGEST number.

Ex. (-8) + (2) = -6

Eight is bigger than 2, when you don't look at the negative sign.

We use the same rules with decimals:

If you use a calculator, make sure you know how to input negative numbers!

Adding Fractions

When adding fractions you need a COMMON DENOMINATOR:

1)
$$\frac{-5}{8} + \frac{6}{8}$$

2)
$$-\frac{8}{7} + -\frac{4}{7}$$

$$\frac{3}{5} + \frac{4}{-5}$$

$$\frac{3}{4} + \frac{-5}{6}$$
Find the LCM first!
$$= - + -$$

You try:

$$\frac{3}{5} + \frac{1}{6}$$

What about mixed numbers?

$$2\frac{1}{3} + 2\frac{3}{5}$$

Step 1: Write each mixed number as an improper fraction.

Step 2: Find a common denominator, and then add numerators.

You try!

1)
$$5\frac{7}{8} + (-3\frac{1}{2})$$

You try!

2)
$$\left(-\frac{12}{3}\right) + \left(-\frac{21}{4}\right)$$

= $-$ +

HOME LEARNING:

Pages 111 to 113 - Questions:

8 (all; use fractions - no calculator)

9acf (use calculator)

11acegi (no calculator)

13, 16, 17abc, 18, 19ac, 20ac

NOTE:

Don't just give answers - you must copy down the question first. You must show work when you see fractions. Ignore anything about "number lines".