Master 2.17

Extra Practice 1

Lesson 2.1: What Is a Power?

1. Identify the base of each power.

a) 6^3	b)	27	(c)	$(-5)^4$	d) -7^0
Base:					
Exponent:					

- 2. Use repeated multiplication to show why 3^5 is not the same as 5^3 .
- 3. Complete this table.

Power	Base	Exponent	Repeated Multiplication	Standard Form
44				
$(-10)^3$				
	-6	2		
			$1 \times 1 \times 1 \times 1 \times 1$	The second secon

4. Write each product as a power, then evaluate.

a)
$$6 \times 6$$

b)
$$3 \times 3 \times 3 \times 3 \times 3 \times 3$$

c)
$$10 \times 10 \times 10 \times 10$$

$$\mathbf{d)} \ \ -(8\times8\times8)$$

5. Write each power as repeated multiplication, then evaluate.

a)
$$7^5$$

c)
$$-9^3$$

$$(-5)^5$$

Name	Date	

- 6. Evaluate each power. For each power:
 - Are the brackets needed?
 - If your answer is yes, what purpose do the brackets serve?
 - a) $(-6)^5$
- b)
- $-(6)^5$
- c) $-(-6)^5$
- d)
 - (-6^5)

- 7. Predict whether each answer is positive or negative, then evaluate.
 - a) $(-3)^2$
- **b)** $(-3)^3$
- c) -3^2
- **d)** -(-3)
- 8. Is the value of -2^4 different from the value of $(-2)^4$? Explain.
- 9. Stamps are sold in a 10 by 10 sheet. The total value of a sheet of stamps is \$60.00.
 - a) Express the number of stamps as a power and in standard form.
 - **b)** Draw a picture to represent this power.

c) What is the value of one stamp?

Name Date

Master 2.18

Extra Practice 2

Lesson 2.2: Powers of Ten and the Zero Exponent

1. Evaluate each power.

- a) 4^0
- **c)** $(-6)^0$

- **d)** 1^0 **e)** -1^0
- **f**) $(-1)^0$

Write each number as a power of 10.

- **a)** 10 000
- **b)** 1 000 000
 - c) one billion
- **d)** ten **e)** 1

Use powers of 10 to write each number.

a) 700 000 000 000

b) 7000

c) 77 077

d) 7 000 007

Write each number in standard form.

- a) (8×10^5)
- **b)** $(9 \times 10^7) + (9 \times 10^6) + (5 \times 10^5)$
- c) $(2 \times 10^3) + (2 \times 10^2) + (6 \times 10^0)$
- **d)** $(5 \times 10^5) + (4 \times 10^8) + (8 \times 10^0) + (3 \times 10^4)$

Name		Date	
------	--	------	--

Write these numbers in standard form, then order them from least to greatest. $(5 \times 10^6) + (5 \times 10^0)$ 50 500 fifty-five hundred

five hundred thousand

$$5 \times 10^{4}$$

 5×10^4 500 500

6. a) Complete this table for a base of 10.

Exponent	Power	Standard Form
6	10^{6}	
5		
4		
3		
2		
1		
0		

b) Use patterns to describe why the power with an exponent of 0 is equal to 1.

Master 2.19)

Extra Practice 3

Lesson 2.3: Order of Operations with Powers

1. Evaluate.

a)
$$5^2 + 3$$

b)
$$5^2 - 3$$

a)
$$5^2 + 3$$
 b) $5^2 - 3$ c) $5 + 3^2$ d) $5 - 3^2$

d)
$$5-3^2$$

e)
$$(5+3)^2$$

e)
$$(5+3)^2$$
 f) $(5-3)^2$ g) 5^2+3^2 h) 5^2-3^2

g)
$$5^2 + 3^2$$

h)
$$5^2 - 3^2$$

2. Evaluate.

a)
$$4^3 \times 2^{-1}$$

b)
$$4^3 \div 2$$

c)
$$4 \times 2^3$$

a)
$$4^3 \times 2$$
 b) $4^3 \div 2$ **c)** 4×2^3 **d)** $4 \div 2^3$

e)
$$(4 \times 2)^3$$

e)
$$(4 \times 2)^3$$
 f) $(4 \div 2)^3$ g) $4^3 \times 2^3$ h) $4^3 \div 2^3$

g)
$$4^3 \times 2^3$$

h)
$$4^3 \div 2^3$$

Name	

Date

Evaluate. 3.

a)
$$(18 \div 3^2 + 1)^4 - 4^2$$

b)
$$3^3 \div 9(3^0 - 2^2)$$

a)
$$(18 \div 3^2 + 1)^4 - 4^2$$
 b) $3^3 \div 9(3^0 - 2^2)$ c) $(12^2 + 5^3)^0 - 2[(-3)^3]$

d)
$$(7-5)^3 \times (8+2)^4$$

e)
$$(4^2 \times 1^5)^2$$

d)
$$(7-5)^3 \times (8+2)^4$$
 e) $(4^2 \times 1^5)^2$ **f)** $[(-3)^4 - (-2)^3]^0 \div [(-4)^3 - (-3)^2]^0$

The formula for the volume, V, of a cylinder with height, h, and radius, r, is $V = \pi r^2 h$. Janet made 3 L of salsa and stores it in jars with a radius of 4 cm and a height of 10 cm.

She uses this expression to determine the number of jars she will need: $\frac{3000}{\pi(4)^2 \times 10}$

About how many jars will Janet need for the salsa?

- Aftab, Shane, and Kyra got different answers when they evaluated this expression: $(-4)^2 - 3[(-9) \div 3]^2$ Aftab's answer was 97, Shane's answer was 43, and Kyra's answer was
 - a) Show the correct solution.

Lesson 2.4: Exponent Laws 1

1. Write each product as a single power.

a)
$$4^3 \times 4^2$$

b)
$$5^0 \times 5^0$$

c)
$$(-2)^2 \times (-2)^4$$

d)
$$-6^3 \times 6^3$$

e)
$$(-7)^0 \times (-7)^2$$

d)
$$-6^3 \times 6^1$$
 e) $(-7)^0 \times (-7)^2$ **f)** $(-9)^6 \times (-9)^3$

2. Write each quotient as a single power.

a)
$$8^7 \div 8^5$$

b)
$$10^4 \div 10^0$$

c)
$$(-1)^6 \div (-1)^3$$

d)
$$\frac{-3^4}{3^4}$$

e)
$$\frac{(-9)^{10}}{(-9)^5}$$

$$f$$
) $\frac{11^9}{11^6}$

Express as a single power.

a)
$$2^3 \times 2^6 \div 2^9$$

a)
$$2^3 \times 2^6 \div 2^9$$
 b) $(-5)^8 \div (-5)^4 \times (-5)^3$

$$c) \qquad \frac{6^3 \times 6^5}{6^2 \times 6^4}$$

a)
$$2^2 - 2^0 \times 2 + 2^3$$

Simplify, then evaluate.
a)
$$2^2 - 2^0 \times 2 + 2^3$$
 b) $(-2)^6 \div (-2)^5 - (-2)^5 \div (-2)^3$ **c)** $-2^2(2^3 \div 2^1) - 2^3$

c)
$$-2^2(2^3 \div 2^1) - 2^3$$

5. Simplify, then evaluate.

a)
$$4^3 \div 4^2 + 2^4 \times 3^2$$

b)
$$3^2 + 4^2 \times 4^1 \div 2^3$$

a)
$$4^3 \div 4^2 + 2^4 \times 3^2$$
 b) $3^2 + 4^2 \times 4^1 \div 2^3$ **c)** $\frac{3^4}{3^3} + \frac{4^2 \times 4^0}{2^4}$

- Write each relationship as a product of powers or a quotient of powers.
 - a) One million is 1000 times as great as one thousand.
 - **b)** One billion is 1000 times as great as one million.
 - c) One hundred is one-tenth of one thousand.
 - d) One is one-millionth of one million.
 - e) One trillion is 1000 times as great as one thousand million.
- Identify, then correct any errors in these answers. Explain how you think the errors occurred.

a)
$$5^3 \times 5^2 = 5^6$$
 b) $2^3 \times 4^2 = 8^5$

b)
$$2^3 \times 4^2 = 8^5$$

c)
$$(-3)^8 \div (-3)^4 = (-3)^4$$

d)
$$1^2 \times 1^4 - 1^3 = 1^3$$

d)
$$1^2 \times 1^4 - 1^3 = 1^3$$
 e) $\frac{4^2 \times 4^4}{4^2 \times 4^1} = 4^2$

Lesson 2.5: Exponent Laws II

- 1. Write each expression as a product of powers or a quotient of powers.
 - a) $(3 \times 2)^4$
- **b**) $[(-4) \times 3]^2$
- c) $[(-2) \times (-4)]^3$
- **d)** $(7 \times 11)^0$

- **e)** $(10 \div 5)^3$ **f)** $[(-12) \div (-6)]^2$ **g)** $\left(\frac{8}{4}\right)^4$ **h)** $\left(\frac{1}{10}\right)^6$
- 2. Write as a power.
 - a) $(3^4)^2$
- **b**) $(5^0)^3$
- c) $-(7^2)^2$
- **d)** $[(-3)^3]^2$
- Why is the value of $[(-3)^3]^2$ positive and the value of $[(-3)^3]^3$ negative?
- Simplify, then evaluate. **a)** $(2^3 \times 2^1)^2$ **b)** $(5^4 \div 5^2)^2$ **c)** $[(-3)^0 \times (-3)^3]^2$

- **d)** $(10^2)^4 \div (10^3)^2$

- 5. Simplify, then evaluate each expression.
 - a) $(3^2 \times 4^3)^2 (4^4 \div 4^2)^2$

b) $(2^3 \div 2^2)^3 + (7^4 \times 7^3)^0$

c) $[(-1)^3]^4 - [(-1)^4 \div (-1)^3]^2$

d) $(4^2 \times 4^3)^0 - (3^2)^2$

e)
$$(5^2 \times 5^0)^3 + (2^5 \div 2^3)^3$$

f)
$$(10^6 \div 10^3)^2 + (2^3 \div 2^1)^4$$

6. Find and correct any errors in each solution.

a)
$$(4^3 \times 2^2)^2 = (8^5)^2$$

= 8^{10}
= 1 073 741 824

You try
$$(4^3 \times 2^2)^2 = (8^5)^2$$

b)
$$[(-10)^3]^4 = (-10)^7$$

= -10 000 000

You try
$$[(-10)^3]^4 = (-10)^7$$

c)
$$(2^2 + 2^3)^2 = (2^5)^2$$

= 2^{10}
= 1024

You try
$$(2^2 + 2^3)^2 = (2^5)^2$$

Laws of Exponents (Review)

Date_____Period

Simplify. Your answer should contain only one base.

1)
$$\left[5^2 \times \left(5^4\right)\right]^6$$

2)
$$\left[6^3 \times 6^3 \times 6^2\right]^2$$

3)
$$5^3 \times 5^2 \times (5^0)^3$$

4)
$$6 \times (6^2)^3$$

5)
$$(4^3)^2 \times 4^2$$

6)
$$6 \times (6^3)^2$$

7)
$$\frac{3^3 \times 3^3}{3^3}$$

8)
$$\frac{2^0 \times 2^3}{2^2}$$

9)
$$\frac{6^{3} \times 6^{9}}{6^{5}}$$

$$10) \; \frac{4 \, \mathsf{x} \, 4^3}{4^2 \, \mathsf{x} \, 4^2}$$

11)
$$\frac{6^2 \times 6^0}{6^2}$$

12)
$$\frac{3^{12}}{3 \times 3^0}$$

$$13) \left(\frac{5^4}{5^3}\right)^3$$

14)
$$\frac{6^{22}}{6^{15}}$$

15)
$$\left(\frac{5^2}{5^3}\right)^0$$

16)
$$\left(\frac{4^2}{(4^0)^2}\right)^3$$

17)
$$\left(\frac{4^3}{4^2}\right)^3$$

18).
$$\frac{(2^3)^2}{2^3}$$

19)
$$\frac{(3^2)^8}{3^2 \times 3^5}$$

20)
$$\frac{4^3 \mathbf{x} (4^2)^2}{4^2}$$

21)
$$\frac{(2^2)^5}{2^3 \times 2^2}$$

22)
$$\frac{[5^3 \times 5^2]^2}{5}$$

$$23) \ \frac{6^3 \, \mathsf{x} \big(6^3 \big)^3}{6^0}$$

24)
$$\frac{\left[2 \times (2^3)^0 \times (2^3)^2\right]^3}{2^6}$$

Powers and Exponent laws

Simplify each of the following

1)
$$201^6 \times 201^3$$
 2) $9^{18} \div 9^{12}$ 3) $6^8 \times 6^{15} \div 6^7$ 4) $(-7)^{11} \div (-7)^4 \times (-7)^5$

5)
$$\frac{3^{13} \times 3^{11}}{3^{20}}$$

6)
$$\frac{10^{11}}{10^6} \times 10^2$$

6)
$$\frac{10^{11}}{10^6} \times 10^2$$
 7) $2 \times 2^5 \times 2 \times 2^3 + 3^7 \times 3^{11} \div 3^2 \times 3$

For each of the following questions SIMPLIFY then evaluate

$$2)\frac{10^{15}\times10^{3}}{10^{8}}$$

2)
$$\frac{10^{15} \times 10^{2}}{10^{8}}$$
 3) $3^{27} \div 3^{22} - 3^{2} \times 3$

4)
$$-2^9 \times 2^{11} \div 2^6 - 2^7 + 5$$

5)
$$4^3(4^{12} \div 4^3) + 4^2$$

5)
$$4^{3}(4^{12} \div 4^{3}) + 4^{2}$$
 6) $(-5)^{9} \div (-5)^{6} \times (-5)^{1} + (-5)^{10} \div (-5^{9})$