Curriculum Outcome

(N1) Demonstrate an understanding of powers with integral bases (excluding base 0) and whole number exponents by: representing repeated multiplication using powers; using patterns to show that a power with an exponent of zero is equal to one; solving problems involving powers.

(N2) Demonstrate an understanding of operations on powers with integral bases (excluding base 0) and whole number exponents.

Student Friendly: Chapter 2 Test Review

tp://www.youtube.com/watch?v=dQ9A-o3dUlM

Warm Up

1) Simplify

$$\left(\frac{3^2}{3}\right)^4 - 2^5 \times 2^9 \div 2^6$$

$$= (3^{1})^{4} - 2^{14} \div 2^{6}$$

$$= (3^{8}) - 2^{14} \div 2^{14} \div$$

$$= 3^4 - 2^8$$

SIMPLIFY ONLY

See next page for answers

SIMPLIFY, THEN EVALUATE

$$\begin{pmatrix} \frac{6^8}{6^5} \end{pmatrix}^4 \qquad \begin{pmatrix} \frac{6^8}{6^5} \end{pmatrix}^4 \qquad \frac{(9^6)^5 \times (9^7)^6}{(9^{11} \times 9^5)^4 \times 9^8} \\
= (6^3)^4 \qquad = \begin{pmatrix} \frac{6^{32}}{6^{20}} \end{pmatrix} \qquad = \frac{(9^{30}) \times (9^{42})}{(9^{16})^4 \times 9^8} \\
= (6^{12}) \qquad = (6^{12}) \qquad = \frac{9^{72}}{9^{64} \times 9^8} \\
= \frac{9^{72}}{9^{72}} \\
= 9^0 \\
= 1$$

Simplify

$$\frac{(3^2)^6 \times (4^6)^4 \times (3^4)^5 \times (4^2)^7}{(4^3)^5 \times (3^4)^3 \times (4^9)^2 \times (3^2)^6}$$

$$= \frac{(3^2)^6 \times (4^6)^4 \times (3^4)^5 \times (4^2)^7}{(4^3)^5 \times (3^4)^3 \times (4^9)^2 \times (3^2)^6}$$

$$= \frac{(3^2)^6 \times (3^4)^5 \times (4^2)^7 \times (4^6)^4}{(3^2)^6 \times (3^4)^3 \times (4^9)^2 \times (4^3)^5}$$

$$= \frac{3^{12} \times 3^{20} \times 4^{14} \times 4^{24}}{3^{12} \times 3^{12} \times 4^{18} \times 4^{15}}$$

$$= \frac{3^{32} \times 4^{38}}{3^{24} \times 4^{33}}$$

$$= 3^8 \times 4^5$$

What is the Area and Perimeter of the following:

Perimeter = Side +Side +Side +Side
=
$$b^3 + b^4 + b^3 + b^4$$

= $2b^3 + 2b^4$

Test Outline

Unit 2: Powers and the Exponent Laws

Powers

Base

Exponent

Repeated Multiplication

The Zero Exponent

Negative base rules

Powers of ten to Standard form and vice versa

Page 86 Study Guide

Order of Operations

BEDMAS

Exponent Laws

Product of Powers

Quotient of Powers

Power of a Power

Power of a Product

Power of a Quotient

Exponent Laws

1) Zero Rule

-Anything raised to the exponent of zero is 1

$$(-5)^0 = 1$$
 or $(x)^0 = 1$

2) Product of Powers Rule

When you multiply like bases you add the exponents

$$(2)^3 \times (2)^5 = (2)^8 \text{ or } (a)^m \times (a)^n = (a)^{m+n}$$

3) Quotient Rule

When you divide like bases you Subtract the exponents

$$\frac{(-4)^7}{(-4)^5} = (-4)^2 \quad \text{or} \quad (a)^m \div (a)^n = (a)^{m-n}$$

4) Power to a Power Rule

With a power to a power we multiply exponents

$$(2^5)^3 = (2)^{15}$$
 or $(a^m)^n = (a)^{mn}$

5) Power of Product Rule

With a power of products we multiply exponents

$$[(5^5) \times (6^4)]^3 = 5^{15} \times 6^{12}$$

or
$$[(a^m) x (b^n)]^p = (a)^{mp} x (b)^{np}$$

6) Power of Quotient Rule

With a power of quotient we multiply exponents

$$\left[\frac{(-3)^6}{(5)^3} \right]^2 = \frac{(-3)^{12}}{(5)^6}$$

REQUIRED

Test Review
WORKSHEETS
All Questions

Optional:

EXTRA REVIEW for T

Page 87-89

Questions:

1		
1	13 ad,	23 bd.
3		•
7a,	14,	24,
•	17,	26,
8abc,	,	27,
9,	18 bc,	<i>21</i> ,
10a	19,	
12,	20 ac.	

And

20 ac,

Practice test

Page 90 all questions