Ch 1: Perfect Squares & Surface Area

Perfect Squares

$$(1)^2 = 1 \times 1 = 1$$

$$(2)^2 = 2 \times 2 = 4$$

$$(3)^2 = 3 \times 3 = 9$$

$$(4)^2 = 4 \times 4 = 16$$

$$(5)^2 = 5 \times 5 = 25$$

$$(6)^2 = 6 \times 6 = 36$$

$$(7)^2 = 7 \times 7 = 49$$

$$(8)^2 = 8 \times 8 = 64$$

$$(9)^2 = 9 \times 9 = 81$$

$$(10)^2 = 10 \times 10 = 100$$

$$(11)^2 = 11 \times 11 = 121$$

$$(12)^2 = 12 \times 12 = 144$$

$$(13)^2 = 13 \times 13 = 169$$

$$(14)^2 = 14 \times 14 = 196$$

$$(15)^2 = 15 \times 15 = 225$$

$$(16)^2 = 16 \times 16 = 256$$

$$(17)^2 = 17 \times 17 = 289$$

$$(18)^2 = 18 \times 18 = 324$$

$$(19)^2 = 19 \times 19 = 361$$

$$(20)^2 = 20 \times 20 = 400$$

$$(21)^2 = 21 \times 21 = 441$$

$$(22)^2 = 22 \times 22 = 484$$

$$(23)^2 = 23 \times 23 = 529$$

$$(24)^2 = 24 \times 24 = 576$$

$$(25)^2 = 25 \times 25 = 625$$

The square root of a number is 25, what is the number $\sqrt{x} = 25$ $x = (25)^2$ x = 625

To determine if a decimal is a perfect square

With a calculator - take the square root and if it is a decimal that ends or repeats then it is a perfect square

With a calculator - change the decimal to a fraction and then see if you can take the square root of the top and the bottom

Pythagorean theorem

base = Area

Hypothesis

$$c^2 = a^2 + b^2$$
 $a^2 = c^2 - b^2$

$$a^2 = c^2 - b^2$$

Area =**π**Γ²

 $C = 2\pi r$

Permetre is the adding up of all sides

Area of one face

5 cubes x 6 faces = 30 faces

-8 overlap faces

22 visible faces

x 4cm²

88cm²

1 overlap = 2 faces disappear

Surface Area of Composite Shapes SA of Big + SA of Small - Overlap area

Surface Area of Warehouse

SA of Big + SA of Small - Overlap areas- floors - windows - doors