Curriculum Outcomes:

(PR1) Generalize a pattern arising from a problem-solving context using linear equations and verify by substitution.

(PR2) Graph linear relations, analyze the graph and interpolate or extrapolate to solve problems.

Student Friendly: Test Review

Using the above graph, estimate the growth of a baby at the end of growth period 6. 21.5 inches

Using the above graph, estimate the growth period when a baby is 23.5 inches.

Growth period 14

Equation

$$y = \left(\frac{\text{Change y}}{\text{Change x}}\right) \left(\text{"x"}\right) \pm \text{"}$$

$$y = \stackrel{\triangle y}{\triangle x} x + \#$$

 $X \to independent \\$

y→ dependent

Linear Relation

- is when the graph is a straight line
- a constant change in 'x' causes a constant change in 'y'

Table of Values

$\Delta \times$	Χ	L V	<u></u>
	0	-8	ر مد
+1	1	-6	+2
+1	-		+2
4	2	-4	
+1	3	-2	+2

- In a table if the x values change by a constant, and the y values change by a constant then the graph is linear

Concrete vs. Discrete

Discrete: Dots

Continuous: Connect

-Look at the "x" and see if you can have half values

Number of Video games	Cost, C(\$)
1	25
2	50 ₀
3	5cre£e 75

Can you buy 1.5 video games?

So would you connect the dots???

Babysitting Job

Number of Hours	Earnings, C(\$)
1	10
2	~ \ ²⁰
3	30

Can you work 1.5 hours?

So would you connect the dots???

These are some other ways to write the equation of a linear relation.

y=3/x +5	$y = \frac{\Delta y}{\Delta x} \times \frac{+}{} \#$	Oblique
3x+2y=4 -	ax + by = c	Oblique
x= -2 Ĵ	x = #	Vertical
y=5 (>)	y = #	Horizontal

You Try

$$y = \frac{\Delta y}{\Delta x} \times \frac{1}{2} \pm \frac{1}{2}$$

Make a table of values, and then graph. Show all work

$$-5x + 4y = 8$$

$$\frac{4y}{4} = \frac{5x}{4} + \frac{8}{4}$$

$$y = 5x + 2$$

remember
$$y = \frac{\Delta y}{\Delta x} \times \pm \#$$

$$\Delta x = 4$$

$$x \mid y$$

$$+4 \begin{cases} \frac{-4}{0} & \frac{-5}{2} \\ \frac{2}{7} & \frac{-1}{2} \end{cases}$$

$$X = -4$$
 $y = \frac{5(-4)}{4} + 2$
 $y = -5 + 2$
 $y = -3$

remember
$$y = \frac{\Delta y}{\Delta x} \times \frac{+}{4}$$
 $y = \frac{5(-4) + 2}{4}$ $y = \frac{5(0) + 2}{4}$ $y = \frac{5(4) + 2}{4}$ $y = 5 + 2$ $y = -3$ $y = 2$ $y = 7$

$$\frac{1}{3}^{6}x + \frac{1}{2}^{6}y = -3$$

$$2x + 3y = -18$$

$$\frac{3y = -2x}{3} - \frac{18}{3}$$

$$y = \frac{-2}{3}x - 6$$

i)
$$y = \frac{1}{2}x$$

(0,0)

(2,1)

ii) y= -2x

x = 0

y = -2x y = -2x

x=2

y=-2(0) = -2(2)

y= 0

(0,0)

iii) y= 3 x

y= 3 (0) y= 3 (2)

(0,0) (2,6)

If you always rearrange first
$$y = \frac{\Delta y}{\Delta x} x + \frac{1}{2}$$

$$Y = 3x + 2$$

$$(0, 2)$$

The number in front of "x" in the equation represents the slope: Slope: (how steep a line is)

What we notice: when x increases by 1, y increases by 3

Slope =
$$\frac{\text{change in y}}{\text{change in x}} \stackrel{\downarrow}{\longleftarrow} = \frac{\Delta y}{\Delta x} = \frac{\text{RISE}}{\text{RUN}} \stackrel{\uparrow}{\longleftarrow}$$

Thus
$$\frac{\Delta y}{\Delta x} = \frac{3}{1} \xrightarrow{\uparrow} \frac{r \ln n + r \ln n}{cover right}$$

Create a table of values for each linear relation and then graph the relation.

$$y = \frac{2}{3}x - 5$$

$$\begin{array}{c|c} A \times = 3 & A \times = 3 \\ \hline X \mid Y & A \times = 3 \\ \hline -3 \mid -7 & +2 \\ \hline 0 \mid -5 & +2 \\ \hline 3 \mid -3 & +2 \end{array}$$

$$5x - 2y = -12$$

$$-2y = -5x - 12$$

$$-2 = -5x - 12$$

$$y = \frac{5}{2}x + 6$$

$$y = \frac{\Delta y}{\Delta x} \times \frac{+}{4} \#$$

Green

$$\frac{\Delta y}{\Delta x} = \frac{3}{7} \qquad (0, \underline{5})$$

$$y = \Delta y \times \pm \#$$

$$\int \frac{3}{2} \times +5$$

Orange

$$\frac{\Delta y}{\Delta x} = \frac{-1}{1} \qquad x=0 \\ (0, 3)$$

$$y = \Delta y \times \pm \#$$

$$y = \frac{-1}{1} \times +3$$

$$y = -x + 3$$

Purple

$$\frac{\Delta y}{\Delta x} = \frac{2}{-1} \qquad (0, -8)$$

$$y = \Delta y \times \pm \#$$

$$y = \frac{-2}{1}\chi - 8$$

Matching Equations with Graphs that Pass Through the Origin

Match each graph on the grid with its equation

(Use the previous slide to help answer)

$$y = -x \qquad \frac{\Delta y}{\Delta x} = \frac{-1}{1} \qquad (0, \underline{0})$$
Green

$$y = 4x \qquad \xrightarrow{\Delta y} = \frac{4}{1} \xrightarrow{\uparrow} \qquad x = 0$$

$$(0, \underline{0})$$
Red

$$y = -2x \qquad \frac{\Delta y}{\Delta x} = \frac{-2}{1} \quad \psi \qquad x = 0$$

Purple

Graph the following using the point-slope formula

hint: must rearrange first $y = \frac{\Delta y}{\Delta x} \times \frac{+}{2} \#$

$$x + y = 4$$

$$y = -x + 4$$

$$\Delta y = \frac{-1}{1}$$

$$2x - 3y = 12$$

$$-3y = -2x + 12$$

$$-3 -3 -3 -3$$

$$y = 2x - 4$$

$$\frac{\Delta y}{\Delta x} = \frac{2}{3} \qquad z = \frac{2}{-3} \qquad x = 0$$

$$(0, -4)$$

A city has grown over the past few years. This table and graph show how the volume of water used each month is related to the population.

				•					,				
er		150	۱ń										
vat	5	J)(JŲ.										

Water Usage in One City

- a) Estimate the monthly water usage for a population of 150 000 people.
- Interpolation

(1125mL)

b) Predict the water usage for 250 000 people.

Extrapolation

(1875mL)

Gass Homework

PAGE 201-203

QUESTIONS

1(c, d,e,f,g), 12, 4, 13, 5(b, c), 14, 10, 15, 11, 17

MOCK TEST

Day 3 Monday - 4 Days of Literacy.notebook

Day 30_31_Chapter 4 Test Review_Work sheets.pdf

Graphing Equation_ws.docx

Linear Eqautions and Graphs .pdf