

a)
$$(3xy^{2})^{4}$$
 b) $\frac{(12r^{12}t^{3})}{(3r^{10}t^{2})}$ 3 $\frac{1}{3}$ $\frac{2}{3}$ $\frac{2$

Laws Of Exponents

Law #1: Product Rule

$$b^m \times b^n = b^{m+n}$$

- when multiplying powers with the **same** base you add the exponents

Exercise:

Simplify the following using the laws of exponents

$$\begin{bmatrix} b) 4^3 \times 3^4 \end{bmatrix}$$

c)
$$(q^7)(q)$$

$$f$$
) $(3z^3)(6z^{12})$

Law #2: Quotient Rule

$$\mathbf{b}^{\mathbf{m}} \div \mathbf{b}^{\mathbf{n}} = \mathbf{b}^{\mathbf{m}-\mathbf{n}}$$

- when dividing powers with the **same** base you subtract the exponents

Exercise:

Simplify the following using exponent laws

a)
$$5^{23} \div 5^{12}$$

$$\frac{d) 12x^3}{4x^1} = 3x^2$$

$$\frac{b) x^{34}}{x^{19}}$$

e)
$$25c^{30}$$

c)
$$c^3 \div c^2$$

Law #3: Power Rule

when raising a power to another power...MULTIPLY the exponents."

$$(b^m)^n = b^{mn}$$

Law #4: Power of Product

when a product is raised to a power, each of the factors are raised to the power."

$$(ab)^m = a^m b^m$$

- when brackets are involved you must multiply the exponents

Exercise:

Simplify the following using Laws of Exponents

a)
$$(m^3)^4$$
 12 b) $(x^2y^4)^3$ 2 c) $(2d^3)^3$ 4 d) $(2m^4n)^2(m^3n^2)$ 2 $2m^4n$ 2