MIR

February 20, 2018

UNIT 1: ROOTS AND POWERS

SECTION 4.4: FRACTIONAL EXPONENTS AND RADICALS

K. Sears
NUMBERS, RELATIONS AND FUNCTIONS 10

WHAT'S THE POINT OF TODAY'S LESSON?

We will continue working on the NRF 10 Specific Curriculum Outcome (SCO) "Algebra and Numbers 3" OR "AN3" which states:

"Demonstrate an understanding of powers with integral and rational exponents."

What does THAT mean???

SCO AN3 means that we will:

apply the 6 exponent laws you learned in grade 9:

$$a^0 = 1$$

$$(a^m)(a^n) = a^{m+n}$$

$$a^m \div a^n = a^{m-n}$$

$$(a^m)^n = a^{mn}$$

$$(ab)^m = a^m b^m$$

$$(a \div b)^n = a^n \div b^n$$

- * use patterns to explain $a^{-n} = \underline{1}$ and $a^{\frac{1}{n}} = \sqrt[n]{a}$
- * apply all exponent laws to evaluate a variety of expressions
- * express powers with rational exponents as radicals and vice versa
- * identify and correct errors in work that involves powers

ANY QUESTIONS ??? (page 221, #1, #3, #4, #6a, #7b, #8, #9 & #11)

//. a)
$$3\sqrt{7} = \sqrt{3x3x7}$$

= $\sqrt{63}$

9. b)
$$\sqrt[3]{96} = \sqrt[3]{8.12}$$
 f) $\sqrt[4]{50} = 2 \times \frac{25}{5 \times 5 \times 5}$ = $\sqrt[4]{50}$ = $\sqrt[4]{50}$ = $\sqrt[4]{50}$ = $\sqrt[4]{50}$

$$f) \sqrt[4]{50} = 2x^{25} \\ 5x^{5} \\ 5x^{5}$$

$$\sqrt[3]{135} = 5 \times 27$$
 5×9
 $5 \times (3 \times 3)$

$$3\sqrt{4}$$

$$= \sqrt[3]{3\times3\times3}\times4$$

$$= \sqrt[3]{108}$$

EXPONENT LAWS (separate sheet):

- 1. Zero Exponent Law: $a^0 = 1$
- 2. Product of Powers: $(a^m)(a^n) = a^{m+n}$
- 3. Quotient of Powers: $a^m \div a^n = a^{m-n}$
- 4. Power of a Power: $(a^m)^n = a^{mn}$
- 5. Power of a Product: $(ab)^m = a^m b^m$
- 6. Power of a Quotient: $(a \div b)^n = a^n \div b^n$

7. MULTIPLICATION PROPERTY OF RADICALS:

$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

EX.:
$$\sqrt{24}$$
 (Factors: 1, 2, 3, 4, 6, 8, 12, 24)
= $\sqrt{4 \cdot 6}$
= $\sqrt{4 \cdot \sqrt{6}}$
= $2 \cdot \sqrt{6}$
= $2\sqrt{6}$ (MIXED RADICAL)

EX.:
$$\sqrt[3]{24}$$
 (ENTIRE RADICAL)
= $\sqrt[3]{8 \cdot 3}$
= $\sqrt[3]{8} \cdot \sqrt[3]{3}$
= $2 \cdot \sqrt[3]{3}$
= $2\sqrt[3]{3}$

LET'S COPY AND COMPLETE THESE TABLES TOGETHER.

x	$x^{\frac{1}{2}} \left(\chi^{0.5} \right)$
1	$1^{\frac{1}{2}} =$
4	$4^{\frac{1}{2}} =$
9	
16	
25	

x	$x^{\frac{1}{3}} \left[\chi(1\div 3) \right]$
1	3
8	
27	
64	
125	

WHAT DO YOU THINK THE EXPONENT 1 MEANS?

WHAT DO YOU THINK THE EXPONENT 1 MEANS?

WHAT DO YOU THINK a^{1/4} AND a^{1/5} MEAN? (TEST YOUR PREDICTIONS WITH A CALCULATOR.)

WHAT DO YOU THINK $a^{\frac{1}{n}}$ MEANS?

In grade 9, you learned that for powers with integral bases and whole number exponents:

$$a^m \cdot a^n = a^{m+n}$$

WE CAN EXTEND THIS LAW TO POWERS WITH FRACTIONAL EXPONENTS WITH A NUMERATOR OF 1:

$$5^{\frac{1}{2}} \cdot 5^{\frac{1}{2}} = 5^{\frac{1}{2} + \frac{1}{2}}$$

$$5^{\frac{1}{2}} \cdot 5^{\frac{1}{2} + \frac{1}{2}}$$

$$5^{\frac{1}{2}} \cdot 5^{\frac{1}{2} + \frac{1}{2}}$$

$$5^{\frac{1}{2} + \frac{1}{2}}$$

$$5^{\frac{1}{2}}$$
 and $\sqrt{5}$ are equivalent expressions; that is, $5^{\frac{1}{2}} = \sqrt{5}$.

SIMILARLY...

$$5^{\frac{1}{3}} \cdot 5^{\frac{1}{3}} \cdot$$

SO...

$$5^{\frac{1}{3}} = \sqrt[3]{5}$$

8. POWERS WITH RATIONAL EXPONENTS WITH A NUMERATOR OF 1:

$$x^{\frac{1}{n}} = \sqrt[n]{x}$$

EX.:
$$\frac{1}{8^{\frac{1}{3}}}$$

$$= \sqrt[3]{8}$$

$$= 2$$

EXAMPLE:

Evaluate each power without using a calculator.

Evaluate each power without using a calculator.

a)
$$1000^{\frac{1}{3}} = 10$$
 b) $0.25^{\frac{1}{2}} = 0.5$

b)
$$0.25^{\frac{1}{2}} = 0.5$$

c)
$$(-8)^{\frac{1}{3}}$$

$$\mathbf{d}) \left(\frac{16}{81}\right)^{\frac{1}{4}} = \frac{\lambda}{3}$$

NOTE: Because a fraction can be written as a terminating or repeating decimal, we can interpret powers with decimal exponents.

EX.:
$$32^{\frac{2}{10}}$$

$$= 32^{\frac{2}{10}}$$

$$= 32^{\frac{1}{5}}$$

$$= \sqrt[5]{32}$$

$$= 2$$

Evaluate 1000.5.

To give meaning to a power such as $8^{\frac{2}{3}}$, we use the exponent law $(a^m)^n = a^{mn}$.

EX.:
$$8^{\frac{2}{3}}$$
 EX.: $8^{\frac{2}{3}}$ $= 8^{2 \cdot \frac{1}{3}}$ $= 8^{2 \cdot \frac{1}{3}}$ $= (8^{2})^{\frac{1}{3}}$ $= \sqrt[3]{8}$ $= \sqrt[3]{8}$ $= \sqrt[3]{64}$ $= \sqrt[3]{64$

9. POWERS WITH RATIONAL EXPONENTS:

EXAMPLE:

- a) Write $40^{\frac{2}{3}}$ in radical form in 2 ways.
- **b**) Write $\sqrt{3^5}$ and $(\sqrt[3]{25})^2$ in exponent form.

SOLUTION: $3^{\frac{5}{2}}$ $25^{\frac{2}{3}}$

a)
$$40^{\frac{2}{3}} = (\sqrt[3]{40})^2 \text{ or } \sqrt[3]{40^2}$$

b)
$$\sqrt{3^5} = 3^{\frac{5}{2}}$$
 and $(\sqrt[3]{25})^2 = 25^{\frac{2}{3}}$

- a) Write $26^{\frac{2}{5}}$ in radical form in 2 ways. (\$\sqrt{26}\)26
- **b**) Write $\sqrt{6^5}$ and $(\sqrt[4]{19})^3$ in exponent form. 6 ! 194

SOLUTION:

a)
$$(\sqrt[5]{26})^2$$
 or $\sqrt[5]{26^2}$

b)
$$6^{\frac{5}{2}}$$
, $19^{\frac{3}{4}}$

EXAMPLE:

Evaluate.

a)
$$0.04^{\frac{3}{2}}$$
 0.008 b) $27^{\frac{4}{3}}$ = 81 c) $(-32)^{0.4}$ d) $1.8^{1.4}$

c)
$$(-32)^{0.4}$$
 d) $1.8^{1.4}$

SOLUTION:

a)
$$0.04^{\frac{3}{2}} = \left(0.04^{\frac{1}{2}}\right)^3$$

= $\left(\sqrt{0.04}\right)^3$
= 0.2^3
= 0.008

c) The exponent
$$0.4 = \frac{4}{10}$$
 or $\frac{2}{5}$
So, $(-32)^{0.4} = (-32)^{\frac{2}{5}}$

$$= \left[(-32)^{\frac{1}{5}} \right]^2$$

$$= \left(\sqrt[5]{-32} \right)^2$$

$$= (-2)^2$$

$$= 4$$

d) 1.8^{1.4}

Use a calculator.

1.8^1.4 2.277096874

 $1.8^{1.4} = 2.2770...$

YOU TRY!

Evaluate.

- **a**) $0.01^{\frac{3}{2}}$
- **b**) $(-27)^{\frac{4}{3}}$
- c) $81^{\frac{3}{4}}$
- **d**) 0.75^{1.2}

SOLUTION:

- a) 0.001 b) 81 c) 27 d) 0.7080...

EXAMPLE:

Biologists use the formula $b = 0.01m^{\frac{2}{3}}$ to estimate the brain mass, b kilograms, of a mammal with body mass m kilograms. Estimate the brain mass of each animal.

- a) a husky with a body mass of 27 kg
- b) a polar bear with a body mass of 200 kg

SOLUTION:

Use the formula $b = 0.01 m^{\frac{2}{3}}$.

a) Substitute: m = 27

$$b = 0.01(27)^{\frac{2}{3}}$$

$$b = 0.01(\sqrt[3]{27})^2$$

$$b = 0.01(3)^2$$

$$b = 0.01(9)$$

$$b = 0.09$$

Use the order of operations. Evaluate the power first.

The brain mass of the husky is approximately 0.09 kg.

b) Substitute: m = 200 $b = 0.01 (200)^{\frac{2}{3}}$ Use a calculator.

The brain mass of the polar bear is approximately 0.34 kg.

Use the formula $b = 0.01m^{\frac{2}{3}}$ to estimate the brain mass of each animal.

- a) a moose with a body mass of 512 kg
- **b**) a cat with a body mass of 5 kg

SOLUTION:

- a) approximately 0.64 kg
- b) approximately 0.03 kg

CONCEPT REINFORCEMENT:

FPCM 10:

Page 227: #3 to #16
Page 228: #17 to #21