- 1. Experiment 7.2 Range of a Projectile (Lab Manual Page 45) Due - Monday, Dec. 17/12
- 2. Text: Page 536, PP #1-8 (Projectiles Launched Horizontally)
- 3. Text: Page 549, PP #13
 Page 570, Prob. #17, 19, 20 (omit graph)
- 4. Handout Projectiles
- 5. Quiz: Projectiles Wednesday, Dec. 19/21

Review Topics: Torque to Angle

Indine Plane

(ironlar Mot.

2D- Collisian.

5HM.

Circular Motion

Handout: Problems - Circular Motion

LEVEL 1 -> Packet (Banked and Unbanked Curves, Vertical Circular Motion)

Universal Gravitation

Experiment 8.1 - Kepler's Laws - Page 49

Chapter 12 - Page 580, PP#1-7

Investigation 12-A, Page 581

Handouts (3) - Kepler's Laws, Value of "g", Speed and Period of a Satellite

Simple Harmonic Motion

Text: Page 608, #1-4
Page 623, #23-27, 30
Mass on Spring

Text: Page 614, #5-8
Page 623, #28, 29
Pendulum
Answer to #5 is listed as #7's. Scan answers for others.

SHM - Pendulum Lab

Handout: SHM Problems

Projectiles

Text: Page 536, PP #1-8

Text: Page 549, PP #13

Page 570, Prob. #17, 19, 20 (omit graph)

Projectiles Fired At An Angle

horizontal velocity -> **constant** vertical velocity -> **changes**

Trajectory - Basic

 $http://galileo.phys.virginia.edu/classes/109N/more_stuff/Applets/ProjectileMotion/jarapplet.html$

Special Case

time up = time down y = 0 m

Projectile Launched At an Angle

Formulas

	Horizontal Motion CONSTANT	Vertical Motion CHANGES
	$\overrightarrow{v_x} = \overline{\underline{x}}$ t_x $t_x \text{ is the time it takes to travel } x$	$\overrightarrow{y} = \overrightarrow{v_{yi}}t + \underline{1}\overrightarrow{a}t^{2}$ $\overrightarrow{v_{yf}} = \overrightarrow{v_{yi}} + \overline{a}t$ $\overrightarrow{v_{yf}} = \overrightarrow{v_{yi}}^{2} + 2\overrightarrow{a}\overrightarrow{y}$
		$\vec{a} = -9.80 \text{ m/s}^2$

The Monkey and the Hunter

Example: An arrow is shot at an angle of 30.0° with the ground. It has a speed of 49 m/s. Assuming the arrow is shot from ground level and it lands on the ground, answer the following questions.

- a) How high will the arrow go? (31 m)
- b) Assuming the arrow lands on the ground, what is its range? (2.1 x 10² m)